917 resultados para Dissolved air Flotation
Resumo:
This work gives a reader basic knowledge about mineralogy and mineral processing. Main focus of this work was on flotation process and pulp electrochemistry on flotation. Three different sulphide poor ores are examined on experimental part. Platinum and palladium were the noble metals, which were contained into studied ores. Electrochemistry of flotation of PGE minerals on sulphide poor ores has been examined only slightly. Bench scale flotation test was used in this study. Chalcopyrite, nickel-pentlandite, pyrite, platinum and pH electrodes were used to investigation of pulp electrochemistry during flotation tests. Effects of grinding media, carbon dioxide atmosphere in grinding and mixture of carbon dioxide and air as flotation gas to PGE flotation and electrochemistry of flotation were studied. Stainless steel grinding media created more oxidising pulp environment to flotation than mild steel grinding media. Concentrate quality improved also with stainless steel grinding media, but the recovery was remarkably poorer, than with mild steel grinding media. Carbon dioxide atmosphere in grinding created very reducing pulp environment, which caused very good concentrate quality. But the recovery was again poorer than with normal mild steel grinding media. Mixture of carbon dioxide and air as flotation gas improved PGE recovery with some ores, but not always. Effect of carbon dioxide to pulp electrochemistry was detected mainly via pH-value.
Resumo:
An efficient flotation method based on the combination of flame atomic absorption spectrometry (FAAS) and separation and preconcentration step for determination of Cr3+, Cu 2+, Co2+, Ni2+, Zn2+, Cd 2+, Fe3+ and Pb2+ ions in various real samples by the possibility of applying bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) as a new collector was studied. The influence of pH, amount of BHABDI as collector, sample matrix, type and amount of eluting agent, type and amount of surfactant as floating agent, ionic strength and air flow rates i.e. variables affecting the efficiency of the extraction system was evaluated. It is ascertained that metal ions such as iron can be separated simultaneously from matrix in the presence of 0.012 mM ligand, 0.025% (w/v) of CTAB to a test sample of 750 mL at pH 6.5. These ions can be eluted quantitatively with 6 mL of 1.0 mol L-1 HNO3 in methanol which lead to the enrichment factor of 125. The detection limits for analyte ions were in the range of 1.3-2.4 ng mL-1. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Resumo:
A new simple and sensitive flotation-spectrophotometric method for the determination of cetylpyridinium chloride (CPC) is reported. The method is based on the formation of an ion- associate between CPC and Orange II (OR) which is floated in the interface of aqueous phase and n-hexane by vigorous shaking. The aqueous solution was discarded and the adsorbed ion associate on to the wall of a separating funnel was dissolved in a small volume of methanol solvent and its absorbance was measured at 480 nm. The apparent molar absorptivity (Ε) of the ion associate was determined to be 4.12 x 10(5) L mol-1 cm-1. The calibration graph was linear in the concentration range of 15-800 ng mL-1 of CPC with a correlation coefficient of 0.9988. The limit of detection (LOD) was 10.8 ng mL-1. The relative standard deviation (RSD) for determination of 100 and 800 ng mL-1 of CPC was 3.47 and 2.04% (n=7), respectively. The method was successfully applied to the determination of CPC in a commercial mouth washer product.
Resumo:
Vaahdotusta käytetään yleisesti erottamaan eri mineraaleja malmista. Tässä menetelmässä käytetään erityisiä pinta-aktiivisia aineita, joita kutsutaan kokoojakemikaaleiksi, muuntamaan halutut mineraalit hydrofobisiksi ja erottamaan ne hydrofiilisistä partikkeleista ilmakuplien avulla. Eräs tärkeimmistä kokoojakemikaalien ryhmistä on ksantaatit. Ksantaateilla on havaittu taipumusta hajota useiksi erilaisiksi hajoamistuotteiksi vaahdotusprosessin aikana. Näillä hajoamistuotteilla voi olla monia haitallisia vaikutuksia vaahdotuksen tuloksiin. Näiden tuotteiden tunnistaminen ja määrittäminen on tärkeää vaahdotusprosessin paremman ymmärtämisen kannalta. Työn kirjallisuusosassa vaahdotusprosessi, ksantaatit ja niiden yleisimmät hajoamistuotteet on esitelty, kuten myös käytetty analyysimenetelmä, kapillaarielektroforeesi. Työn kokeellisessa osassa etsittiin sopivaa erotusmenetelmää etyyliksantaatin, etyylitiokarbonaatin, etyyliperksantaatin ja etyyliksantyylitiosulfaatin erottamiseksi kapillaarilelektroforeesilla. Pääasiassa keskityttiin kahteen eri erotusmenetelmään. Ensimmäinen menetelmä kykeni erottamaan kaikki tutkitut tuotteet puhdasvesinäytteissä, ja toinen menetelmä oli sopiva näiden tuotteiden erottamiseen prosessivesinäytteissä. Jälkimmäistä menetelmää kokeiltiin käytännössä rikastamolla, jossa sillä kyettiin erottamaan isobutyyliksantaatti, isobutyylitiokarbonaatti, ja suurella todennäköisyydellä myös isobutyyliperksantaatti.
Resumo:
Vaahdotusprosessia käytetään yleisesti erottamaan arvokkaita mineraaleja malmeista. Toimiakseen tehokkaasti prosessi tarvitsee kokoojakemikaaleja, joiden tehtävänä on sitoa halutut mineraalit ilmakupliin. Jotta näiden kemikaalien käyttäytymistä prosessissa voitaisiin ymmärtää paremmin ja prosessin ohjausta tehostaa, pitää kokoojia pystyä analysoimaan prosessivesistä. Työn kirjallisuusosassa on koottu ja vertailtu erilaisia kirjallisuudesta löytyneitä analyysimenetelmiä kokoojakemikaaleille. Kokeellisessaosassa on kehitetty kaksi kapillaarielektroforeesimenetelmää näiden kemikaalien tutkimiseen. Menetelmien toteamisrajat tutkituille kemikaaleille olivat seuraavanlaiset: natrium diiosobutylditiofosfaattille (DTP) 2,7 mg/L puhtaassa vedessä ja 6,7 mg/L prosessivedessä; natrium diisobutyldithiofosfinaatille (DTPI) vastaavasti 4,5 mg/L ja 6,7 mg/L; etyyli ksantaatille 0,025 mg/L ja 0,16 mg/L; ja isobutyyli ksantaatille 0,41 mg/L ja 0,62 mg/L. Näitä menetelmiä voidaan tulevaisuudessa kehittää kokoojien hajoamistuotteiden analysointia varten sekä prosessien on-line mittauksiin.
Resumo:
Valuable minerals can be recovered by using froth flotation. This is a widely used separation technique in mineral processing. In a flotation cell hydrophobic particles attach on air bubbles dispersed in the slurry and rise on the top of the cell. Valuable particles are made hydrophobic by adding collector chemicals in the slurry. With the help of a frother reagent a stable froth forms on the top of the cell and the froth with valuable minerals, i.e. the concentrate, can be removed for further processing. Normally the collector is dosed on the basis of the feed rate of the flotation circuit and the head grade of the valuable metal. However, also the mineral composition of the ore affects the consumption of the collector, i.e. how much is adsorbed on the mineral surfaces. Therefore it is worth monitoring the residual collector concentration in the flotation tailings. Excess usage of collector causes unnecessary costs and may even disturb the process. In the literature part of the Master’s thesis the basics of flotation process and collector chemicals are introduced. Capillary electrophoresis (CE), an analytical technique suitable for detecting collector chemicals, is also reviewed. In the experimental part of the thesis the development of an on-line CE method for monitoring the concentration of collector chemicals in a flotation process and the results of a measurement campaign are presented. It was possible to determine the quality and quantity of collector chemicals in nickel flotation tailings at a concentrator plant with the developed on-line CE method. Sodium ethyl xanthate and sodium isopropyl xanthate residuals were found in the tailings and slight correlation between the measured concentrations and the dosage amounts could be seen.
Resumo:
The complexation of Cu by sewage sludge-derived dissolved organic matter (SSDOM) is a process by which the environmental significance of the element may become enhanced due to reduced soil sorption and, hence, increased mobility. The work described in this paper used an ion selective electrode procedure to show that SSDOM complexation of Cu was greatest at intermediate pH values because competition between hydrogen ions and Cu for SSDOM binding sites, and between hydroxyl ions and SSDOM as Cu ligands, was lowest at such values. Batch sorption experiments further showed that the process of Cu complexation by SSDOM provided an explanation for enhanced desorption of Cu from the solid phase of a contaminated, organic matter-rich, clay loam soil, and reduced adsorption of Cu onto the solid phase of a sandy loam soil. Complexation of Cu by SSDOM did not affect uptake of Cu by spring barley plants, when compared to free ionic Cu, in a sand-culture pot experiment. However, it did appear to lead to greater biomass yields of the plant; perhaps indicating that the Cu-SSDOM complex had a lower toxicity towards the plant than the free Cu ion.
Resumo:
The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.
Resumo:
Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaia); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaia stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha(-1) year(-1)). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.
Resumo:
Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The flotation capacity was determined for cells of yeasts strains belonging to the genera Hansenula, Candida and Saccharomyces. A heterogeneous group of yeasts, comprising strains from the three genera, was identified as showing high flotation capacities (degrees of flotation above 50%), which were practically not affected by variations in medium pH in both the synthetic medium and 2% molasses. Thus, the flotation capacity of the cells in this yeast group seemed strongly dependent on the liquid phase properties and/or growth medium composition, more than on the simple variation in pH of the cell suspensions. A second group of strains, belonging to the Saccharomyces genus, including also brewing yeast strains, was identified as having lower flotation capacities (degrees of flotation below 50% at pH 1.5), which showed no alterations or variations significantly affected by the medium pH. Foam volumes obtained with Saccharomyces strains were greater in synthetic media than in molasses owing to the higher air flow rates required for flotation in molasses. The flotation efficiency decreased in molasses in all cases as well as the foam volume, except in the case of Hansenula cells, which showed an increased foam volume. This was probably due to variations in product excretion by the different yeasts and/or differences in cell wall composition.
Resumo:
Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A study of the preconcentration of tioethers in air by means of the passage of gas flow on solid sorbents coated with sodium tetrachloropalladate was undertaken with the aim of achieving chemical fixation. This fixation presented high specificity and blocked the migration of the sorbed compound through the other active sites. The species obtained were selectively dissolved in organic solvents, resulting in the sulfur reduced compound concentration in the organic phase, which could be determined spectrophotometrically.
Resumo:
Flotation or cell recovery in foams (proportion of the total cells in the medium transferred to the foam) and flotation efficiency (proportion of the cells transferred from an initial volume of medium equal to the residual volume after flotation) are functions of time, aeration rate, initial volume of medium, and initial concentration of cells. Cell recovery reached constant values (around 96.4 +/- 6.3%) and flotation efficiency decreased (owing to increases in the liquid content of the foam), with increases in air how rate (above 6-7 ml air s(-1)) and volumes of medium (above 11 ml) added to the column. Increases in concentration of cells in the medium led to increases in the concentration of cells in the foam.