975 resultados para Discrete simulation
Resumo:
Technological development brings more and more complex systems to the consumer markets. The time required for bringing a new product to market is crucial for the competitive edge of a company. Simulation is used as a tool to model these products and their operation before actual live systems are built. The complexity of these systems can easily require large amounts of memory and computing power. Distributed simulation can be used to meet these demands. Distributed simulation has its problems. Diworse, a distributed simulation environment, was used in this study to analyze the different factors that affect the time required for the simulation of a system. Examples of these factors are the simulation algorithm, communication protocols, partitioning of the problem, distributionof the problem, capabilities of the computing and communications equipment and the external load. Offices offer vast amounts of unused capabilities in the formof idle workstations. The use of this computing power for distributed simulation requires the simulation to adapt to a changing load situation. This requires all or part of the simulation work to be removed from a workstation when the owner wishes to use the workstation again. If load balancing is not performed, the simulation suffers from the workstation's reduced performance, which also hampers the owner's work. Operation of load balancing in Diworse is studied and it is shown to perform better than no load balancing, as well as which different approaches for load balancing are discussed.
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of pH and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups. © 2011 American Institute of Physics.
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
Transportation and warehousing are large and growing sectors in the society, and their efficiency is of high importance. Transportation also has a large share of global carbondioxide emissions, which are one the leading causes of anthropogenic climate warming. Various countries have agreed to decrease their carbon emissions according to the Kyoto protocol. Transportation is the only sector where emissions have steadily increased since the 1990s, which highlights the importance of transportation efficiency. The efficiency of transportation and warehousing can be improved with the help of simulations, but models alone are not sufficient. This research concentrates on the use of simulations in decision support systems. Three main simulation approaches are used in logistics: discrete-event simulation, systems dynamics, and agent-based modeling. However, individual simulation approaches have weaknesses of their own. Hybridization (combining two or more approaches) can improve the quality of the models, as it allows using a different method to overcome the weakness of one method. It is important to choose the correct approach (or a combination of approaches) when modeling transportation and warehousing issues. If an inappropriate method is chosen (this can occur if the modeler is proficient in only one approach or the model specification is not conducted thoroughly), the simulation model will have an inaccurate structure, which in turn will lead to misleading results. This issue can further escalate, as the decision-maker may assume that the presented simulation model gives the most useful results available, even though the whole model can be based on a poorly chosen structure. In this research it is argued that simulation- based decision support systems need to take various issues into account to make a functioning decision support system. The actual simulation model can be constructed using any (or multiple) approach, it can be combined with different optimization modules, and there needs to be a proper interface between the model and the user. These issues are presented in a framework, which simulation modelers can use when creating decision support systems. In order for decision-makers to fully benefit from the simulations, the user interface needs to clearly separate the model and the user, but at the same time, the user needs to be able to run the appropriate runs in order to analyze the problems correctly. This study recommends that simulation modelers should start to transfer their tacit knowledge to explicit knowledge. This would greatly benefit the whole simulation community and improve the quality of simulation-based decision support systems as well. More studies should also be conducted by using hybrid models and integrating simulations with Graphical Information Systems.
Resumo:
Combating climate change is one of the key tasks of humanity in the 21st century. One of the leading causes is carbon dioxide emissions due to usage of fossil fuels. Renewable energy sources should be used instead of relying on oil, gas, and coal. In Finland a significant amount of energy is produced using wood. The usage of wood chips is expected to increase in the future significantly, over 60 %. The aim of this research is to improve understanding over the costs of wood chip supply chains. This is conducted by utilizing simulation as the main research method. The simulation model utilizes both agent-based modelling and discrete event simulation to imitate the wood chip supply chain. This thesis concentrates on the usage of simulation based decision support systems in strategic decision-making. The simulation model is part of a decision support system, which connects the simulation model to databases but also provides a graphical user interface for the decisionmaker. The main analysis conducted with the decision support system concentrates on comparing a traditional supply chain to a supply chain utilizing specialized containers. According to the analysis, the container supply chain is able to have smaller costs than the traditional supply chain. Also, a container supply chain can be more easily scaled up due to faster emptying operations. Initially the container operations would only supply part of the fuel needs of a power plant and it would complement the current supply chain. The model can be expanded to include intermodal supply chains as due to increased demand in the future there is not enough wood chips located close to current and future power plants.
Resumo:
Cloud Computing paradigm is continually evolving, and with it, the size and the complexity of its infrastructure. Assessing the performance of a Cloud environment is an essential but strenuous task. Modeling and simulation tools have proved their usefulness and powerfulness to deal with this issue. This master thesis work contributes to the development of the widely used cloud simulator CloudSim and proposes CloudSimDisk, a module for modeling and simulation of energy-aware storage in CloudSim. As a starting point, a review of Cloud simulators has been conducted and hard disk drive technology has been studied in detail. Furthermore, CloudSim has been identified as the most popular and sophisticated discrete event Cloud simulator. Thus, CloudSimDisk module has been developed as an extension of CloudSim v3.0.3. The source code has been published for the research community. The simulation results proved to be in accordance with the analytic models, and the scalability of the module has been presented for further development.
Resumo:
The objective of the work is to study the flow behavior and to support the design of air cleaner by dynamic simulation.In a paper printing industry, it is necessary to monitor the quality of paper when the paper is being produced. During the production, the quality of the paper can be monitored by camera. Therefore, it is necessary to keep the camera lens clean as wood particles may fall from the paper and lie on the camera lens. In this work, the behavior of the air flow and effect of the airflow on the particles at different inlet angles are simulated. Geometries of a different inlet angles of single-channel and double-channel case were constructed using ANSYS CFD Software. All the simulations were performed in ANSYS Fluent. The simulation results of single-channel and double-channel case revealed significant differences in the behavior of the flow and the particle velocity. The main conclusion from this work are in following. 1) For the single channel case the best angle was 0 degree because in that case, the air flow can keep 60% of the particles away from the lens which would otherwise stay on lens. 2) For the double channel case, the best solution was found when the angle of the first inlet was 0 degree and the angle of second inlet was 45 degree . In that case, the airflow can keep 91% of particles away from the lens which would otherwise stay on lens.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
Dans les études sur le transport, les modèles de choix de route décrivent la sélection par un utilisateur d’un chemin, depuis son origine jusqu’à sa destination. Plus précisément, il s’agit de trouver dans un réseau composé d’arcs et de sommets la suite d’arcs reliant deux sommets, suivant des critères donnés. Nous considérons dans le présent travail l’application de la programmation dynamique pour représenter le processus de choix, en considérant le choix d’un chemin comme une séquence de choix d’arcs. De plus, nous mettons en œuvre les techniques d’approximation en programmation dynamique afin de représenter la connaissance imparfaite de l’état réseau, en particulier pour les arcs éloignés du point actuel. Plus précisément, à chaque fois qu’un utilisateur atteint une intersection, il considère l’utilité d’un certain nombre d’arcs futurs, puis une estimation est faite pour le restant du chemin jusqu’à la destination. Le modèle de choix de route est implanté dans le cadre d’un modèle de simulation de trafic par événements discrets. Le modèle ainsi construit est testé sur un modèle de réseau routier réel afin d’étudier sa performance.
Resumo:
This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.
Resumo:
Im Rahmen dieser Arbeit werden Modellbildungsverfahren zur echtzeitfähigen Simulation wichtiger Schadstoffkomponenten im Abgasstrom von Verbrennungsmotoren vorgestellt. Es wird ein ganzheitlicher Entwicklungsablauf dargestellt, dessen einzelne Schritte, beginnend bei der Ver-suchsplanung über die Erstellung einer geeigneten Modellstruktur bis hin zur Modellvalidierung, detailliert beschrieben werden. Diese Methoden werden zur Nachbildung der dynamischen Emissi-onsverläufe relevanter Schadstoffe des Ottomotors angewendet. Die abgeleiteten Emissionsmodelle dienen zusammen mit einer Gesamtmotorsimulation zur Optimierung von Betriebstrategien in Hybridfahrzeugen. Im ersten Abschnitt der Arbeit wird eine systematische Vorgehensweise zur Planung und Erstellung von komplexen, dynamischen und echtzeitfähigen Modellstrukturen aufgezeigt. Es beginnt mit einer physikalisch motivierten Strukturierung, die eine geeignete Unterteilung eines Prozessmodells in einzelne überschaubare Elemente vorsieht. Diese Teilmodelle werden dann, jeweils ausgehend von einem möglichst einfachen nominalen Modellkern, schrittweise erweitert und ermöglichen zum Abschluss eine robuste Nachbildung auch komplexen, dynamischen Verhaltens bei hinreichender Genauigkeit. Da einige Teilmodelle als neuronale Netze realisiert werden, wurde eigens ein Verfah-ren zur sogenannten diskreten evidenten Interpolation (DEI) entwickelt, das beim Training einge-setzt, und bei minimaler Messdatenanzahl ein plausibles, also evidentes Verhalten experimenteller Modelle sicherstellen kann. Zum Abgleich der einzelnen Teilmodelle wurden statistische Versuchs-pläne erstellt, die sowohl mit klassischen DoE-Methoden als auch mittels einer iterativen Versuchs-planung (iDoE ) generiert wurden. Im zweiten Teil der Arbeit werden, nach Ermittlung der wichtigsten Einflussparameter, die Model-strukturen zur Nachbildung dynamischer Emissionsverläufe ausgewählter Abgaskomponenten vor-gestellt, wie unverbrannte Kohlenwasserstoffe (HC), Stickstoffmonoxid (NO) sowie Kohlenmono-xid (CO). Die vorgestellten Simulationsmodelle bilden die Schadstoffkonzentrationen eines Ver-brennungsmotors im Kaltstart sowie in der anschließenden Warmlaufphase in Echtzeit nach. Im Vergleich zur obligatorischen Nachbildung des stationären Verhaltens wird hier auch das dynami-sche Verhalten des Verbrennungsmotors in transienten Betriebsphasen ausreichend korrekt darge-stellt. Eine konsequente Anwendung der im ersten Teil der Arbeit vorgestellten Methodik erlaubt, trotz einer Vielzahl von Prozesseinflussgrößen, auch hier eine hohe Simulationsqualität und Ro-bustheit. Die Modelle der Schadstoffemissionen, eingebettet in das dynamische Gesamtmodell eines Ver-brennungsmotors, werden zur Ableitung einer optimalen Betriebsstrategie im Hybridfahrzeug ein-gesetzt. Zur Lösung solcher Optimierungsaufgaben bieten sich modellbasierte Verfahren in beson-derer Weise an, wobei insbesondere unter Verwendung dynamischer als auch kaltstartfähiger Mo-delle und der damit verbundenen Realitätsnähe eine hohe Ausgabequalität erreicht werden kann.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.