940 resultados para Directed acyclic graphs


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents the principal results of the Ph.D. thesis Intelligent systems in bioinformatics: mapping and merging anatomical ontologies by Peter Petrov, successfully defended at the St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics, Department of Information Technologies, on 26 April 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A special class of preferences, given by a directed acyclic graph, is considered. They are represented by incomplete pairwise comparison matrices as only partial information is available: for some pairs no comparison is given in the graph. A weighting method satisfies the property linear order preservation if it always results in a ranking such that an alternative directly preferred to another does not have a lower rank. We study whether two procedures, the Eigenvector Method and the Logarithmic Least Squares Method meet this axiom. Both weighting methods break linear order preservation, moreover, the ranking according to the Eigenvector Method depends on the incomplete pairwise comparison representation chosen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A proper edge-coloring with the property that every cycle contains edges of at least three distinct colors is called an acyclic edge-coloring. The acyclic chromatic index of a graph G, denoted. chi'(alpha)(G), is the minimum k such that G admits an acyclic edge-coloring with k colors. We conjecture that if G is planar and Delta(G) is large enough, then chi'(alpha) (G) = Delta (G). We settle this conjecture for planar graphs with girth at least 5. We also show that chi'(alpha) (G) <= Delta (G) + 12 for all planar G, which improves a previous result by Fiedorowicz, Haluszczak, and Narayan Inform. Process. Lett., 108 (2008), pp. 412-417].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph is called 2-degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2-degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non - regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G)<=Delta + 2, where Delta = Delta(G) denotes the maximum degree of the graph. We prove the conjecture for 2-degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2-degenerate graph with maximum degree ?, then a'(G)<=Delta + 1. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 68:1-27, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G) ? ? + 2, where ? = ?(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|-1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a'(G) ? ? + 3. Triangle-free planar graphs satisfy Property A. We infer that a'(G) ? ? + 3, if G is a triangle-free planar graph. Another class of graph which satisfies Property A is 2-fold graphs (union of two forests). (C) 2011 Wiley Periodicals, Inc. J Graph Theory

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A ranking method assigns to every weighted directed graph a (weak) ordering of the nodes. In this paper we axiomatize the ranking method that ranks the nodes according to their outflow using four independent axioms. Besides the well-known axioms of anonymity and positive responsiveness we introduce outflow monotonicity – meaning that in pairwise comparison between two nodes, a node is not doing worse in case its own outflow does not decrease and the other node’s outflow does not increase – and order preservation – meaning that adding two weighted digraphs such that the pairwise ranking between two nodes is the same in both weighted digraphs, then this is also their pairwise ranking in the ‘sum’ weighted digraph. The outflow ranking method generalizes the ranking by outdegree for directed graphs, and therefore also generalizes the ranking by Copeland score for tournaments.

Relevância:

40.00% 40.00%

Publicador: