995 resultados para Digital-filters
Resumo:
A linearly tunable low-voltage CMOS transconductor featuring a new adaptative-bias mechanism that considerably improves the stability of the processed-signal common,mode voltage over the tuning range, critical for very-low voltage applications, is introduced. It embeds a feedback loop that holds input devices on triode region while boosting the output resistance. Analysis of the integrator frequency response gives an insight into the location of secondary poles and zeros as function of design parameters. A third-order low-pass Cauer filter employing the proposed transconductor was designed and integrated on a 0.8-mum n-well CMOS standard process. For a 1.8-V supply, filter characterization revealed f(p) = 0.93 MHz, f(s) = 1.82 MHz, A(min) = 44.08, dB, and A(max) = 0.64 dB at nominal tuning. Mined by a de voltage V-TUNE, the filter bandwidth was linearly adjusted at a rate of 11.48 kHz/mV over nearly one frequency decade. A maximum 13-mV deviation on the common-mode voltage at the filter output was measured over the interval 25 mV less than or equal to V-TUNE less than or equal to 200 mV. For V-out = 300 mV(pp) and V-TUNE = 100 mV, THD was -55.4 dB. Noise spectral density was 0.84 muV/Hz(1/2) @1 kHz and S/N = 41 dB @ V-out = 300 mV(pp) and 1-MHz bandwidth. Idle power consumption was 1.73 mW @V-TUNE = 100 mV. A tradeoff between dynamic range, bandwidth, power consumption, and chip area has then been achieved.
Resumo:
A very simple and robust method for ceramics grains quantitative image analysis is presented. Based on the use of optimal imaging conditions for reflective light microscopy of bulk samples, a digital image processing routine was developed for shading correction, noise suppressing and contours enhancement. Image analysis was done for grains selected according to their concavities, evaluated by perimeter ratio shape factor, to avoid consider the effects of breakouts and ghost boundaries due to ceramographic preparation limitations. As an example, the method was applied for two ceramics, to compare grain size and morphology distributions. In this case, most of artefacts introduced by ceramographic preparation could be discarded due to the use of perimeter ratio exclusion range.
Resumo:
The reproducibility of measurements of alveolar bone loss on radiographs may be a problem on epidemiologic studies, as they are based on comparisons of the diagnosis of various examiners. The aim of the present research paper was to assess the inter- and intra-examiner reproducibility of measurements of the interproximal alveolar bone loss on non-manipulated digital radiographs and after the application of image filters. Five Oral Radiologists measured the distance between the cementoenamel junction (CEJ) to the alveolar crest or to the deepest point of the bony defect on 12 interproximal digital radiographs of molars and bicuspids of a dry human skull. The digital manipulation and the linear measurements were obtained with the Trophy Windows software (Throphy®). For each image, six different versions were created: 1) non-manipulated; 2) bright-contrast adjustment; 3) negative; 4) negative with brightness-contrast adjustment; 5) pseudo-colored; 6) pseudo-colored with brightness-contrast adjustment. In order to prevent interpretation bias because of the repetition of measurements, the examiners measured the radiographs in a random sequence. The two-way ANOVA test at 5% level of significance to compare the means of readings of the same operator with each filter indicated p<0.05 for the majority of operators, while the comparison between the mean values of operators using the same filter indicated p>0.05 for all filters. Based on the results, we concluded that linear measurements of interproximal alveolar bone loss on digital radiographs are highly reproducible among examiners. Nevertheless, the application of image filters significantly influenced the degree of intra-examiner reproducibility. Some filters even reduced the reproducibility of intra-examiner readings.
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The purpose of this paper is to present a computer model that enables the operation analysis of a tuned filter as an attenuator device of harmonic generated 12 and 18-pulses converters with Y-generalized differential connection. Are presented in this study physical considerations, mathematical modeling and digital simulations in the frequency domain using the software Orcad-Pspice®, which allows a spectral analysis of the harmonic components and supports the search for an optimal filtering process. It is unequivocally demonstrated the feasibility of the application as an alternative to optimize the use of multipulse converters, and enable the operation of this device within the established regulatory standards. The validation of the proposed model is based on results obtained in the time domain using Matlab/Simulink®. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.
Resumo:
In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR2/(D) over bar (g), with CNR being the contrast-to-noise ratio in image and (D) over bar (g) being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm <= t <= 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t >= 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 mu m of the Mo filter at 24-25 kVp, while 60 mu m of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.
Resumo:
Objective: The purpose of this study was to analyse the use of digital tools for image enhancement of mandibular radiolucent lesions and the effects of this manipulation on the percentage of correct radiographic diagnoses. Methods: 24 panoramic radiographs exhibiting radiolucent lesions were selected, digitized and evaluated by non-experts (undergraduate and newly graduated practitioners) and by professional experts in oral diagnosis. The percentages of correct and incorrect diagnoses, according to the use of brightness/contrast, sharpness, inversion, highlight and zoom tools, were compared. All dental professionals made their evaluations without (T-1) and with (T-2) a list of radiographic diagnostic parameters. Results: Digital tools were used with low frequency mainly in T-2. The most preferred tool was sharpness (45.2%). In the expert group, the percentage of correct diagnoses did not change when any of the digital tools were used. For the non-expert group, there was an increase in the frequency of correct diagnoses when brightness/contrast was used in T-2 (p = 0.008) and when brightness/contrast and sharpness were not used in T-1 (p = 0.027). The use or non-use of brightness/contrast, zoom and sharpness showed moderate agreement in the group of experts [kappa agreement coefficient (kappa) = 0.514, 0.425 and 0.335, respectively]. For the non-expert group there was slight agreement for all the tools used (kappa <= 0.237). Conclusions: Consulting the list of radiographic parameters before image manipulation reduced the frequency of tool use in both groups of examiners. Consulting the radiographic parameters with the use of some digital tools was important for improving correct diagnosis only in the group of non-expert examiners. Dentomaxillofacial Radiology (2012) 41, 203-210. doi: 10.1259/dmfr/78567773
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.
Resumo:
We introduce a new type of filter approximation method and call it the Pascal filter, which we construct from the Pascal polynomials. The roll-off characteristics of the Pascal, Butterworth, and the Chebyshev filters are compared.
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.
Resumo:
High concentrations of fluoride naturally occurring in the ground water in the Arusha region of Tanzania cause dental, skeletal and non-skeletal fluorosis in up to 90% of the region’s population [1]. Symptoms of this incurable but completely preventable disease include brittle, discolored teeth, malformed bones and stiff and swollen joints. The consumption of high fluoride water has also been proven to cause headaches and insomnia [2] and adversely affect the development of children’s intelligence [3, 4]. Despite the fact that this array of symptoms may significantly impact a society’s development and the citizens’ ability to perform work and enjoy a reasonable quality of life, little is offered in the Arusha region in the form of solutions for the poor, those hardest hit by the problem. Multiple defluoridation technologies do exist, yet none are successfully reaching the Tanzanian public. This report takes a closer look at the efforts of one local organization, the Defluoridation Technology Project (DTP), to address the region’s fluorosis problem through the production and dissemination of bone char defluoridation filters, an appropriate technology solution that is proven to work. The goal of this research is to improve the sustainability of DTP’s operations and help them reach a wider range of clients so that they may reduce the occurrence of fluorosis more effectively. This was done first through laboratory testing of current products. Results of this testing show a wide range in uptake capacity across batches of bone char emphasizing the need to modify kiln design in order to produce a more consistent and high quality product. The issue of filter dissemination was addressed through the development of a multi-level, customerfunded business model promoting the availability of filters to Tanzanians of all socioeconomic levels. Central to this model is the recommendation to focus on community managed, institutional sized filters in order to make fluoride free water available to lower income clients and to increase Tanzanian involvement at the management level.
Resumo:
Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).