971 resultados para Diffuse coplanar surface barrier discharge
Resumo:
Volatile amines are prominent indicators of food freshness, as they are produced during many microbiological food degradation processes. Monitoring and indicating the volatile amine concentration within the food package by intelligent packaging solutions might therefore be a simple yet powerful way to control food safety throughout the distribution chain.rnrnIn this context, this work aims to the formation of colourimetric amine sensing surfaces on different substrates, especially transparent PET packaging foil. The colour change of the deposited layers should ideally be discernible by the human eye to facilitate the determination by the end-user. rnrnDifferent tailored zinc(II) and chromium(III) metalloporphyrins have been used as chromophores for the colourimetric detection of volatile amines. A new concept to increase the porphyrins absorbance change upon exposure to amines is introduced. Moreover, the novel porphyrins’ processability during the deposition process is increased by their enhanced solubility in non-polar solvents.rnrnThe porphyrin chromophores have successfully been incorporated into polysiloxane matrices on different substrates via a dielectric barrier discharge enhanced chemical vapour deposition. This process allows the use of nitrogen as a cheap and abundant plasma gas, produces minor amounts of waste and by-products and can be easily introduced into (existing) roll-to-roll production lines. The formed hybrid sensing layers tightly incorporate the porphyrins and moreover form a porous structure to facilitate the amines diffusion to and interaction with the chromophores.rnrnThe work is completed with the thorough analysis of the porphyrins’ amine sensing performance in solution as well as in the hybrid coatings . To reveal the underlying interaction mechanisms, the experimental results are supported by DFT calculations. The deposited layers could be used for the detection of NEt3 concentrations below 10 ppm in the gas phase. Moreover, the coated foils have been tested in preliminary food storage experiments. rnrnThe mechanistic investigations on the interaction of amines with chromium(III) porphyrins revealed a novel pathway to the formation of chromium(IV) oxido porphyrins. This has been used for electrochemical epoxidation reactions with dioxygen as the formal terminal oxidant.rn
Resumo:
In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.
Resumo:
Neste trabalho foram desenvolvidos detectores de radiação Barreira de superfície de silício que fossem capazes de detectar a presença da radiação gama de baixa energia proveniente de sementes de iodo-125 utilizada em tratamentos de braquiterapia. A partir de substratos comerciais de silício foram desenvolvidos os detectores, de uma sequência que partiu de tratamentos químicos nas superfícies destes substratos com a intenção de minimizar os possíveis ruídos gerados, validação das amostras obtidas como diodos, assegurando características detectoras, e a efetiva utilização como detector para fontes radioativas de iodo-125 com energia em torno de 25 kev e amerício-251 com energia na ordem de 59 kev. Finalizou realizando a análise dos espectros de energia obtidos e assim foi possível observar a capacidade destes detectores para mensuração da energia proveniente destas sementes.
Resumo:
In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.
Resumo:
L’attività di tesi ha previsto la progettazione e realizzazione di sorgenti di plasma di non equilibrio a pressione atmosferica e l’individuazione delle condizioni operative ottimali per l’idrofobizzazione di materiali tessili. La prima parte delle attività di tesi hanno riguardato lo studio e l’approfondimento della letteratura scientifica al fine di individuare le sorgenti e i processi plasma assistiti per l’idrofobizzazione dei materiali. Relativamente alle sorgenti di plasma di non-equilibrio a pressione atmosferica, studi di letteratura riportano che sorgenti di tipo APPJ (Atmospheric Pressure Plasma Jet) consentono di effettuare un trattamento localizzato in un punto, mentre sorgenti DBD (Dielectric Barrier Discharge) risultano idonee a trattamenti di materiali large area. Per quanto riguarda i processi plasma assistiti, sulla base di quanto riportato in letteratura il processo di idrofobizzazione può avvenire principalmente mediante polimerizzazione di gas organici contenenti fluoro, introdotti nella regione di plasma, con la conseguente deposizione di coating fluorurati. Le attività sperimentali condotte durante la tesi hanno avuto l’obbiettivo di valutare la possibilità di rendere idrofobico un filato di fibra tessile naturale mediante l’utilizzo di una sorgente plasma jet operante con miscela di argon e gas organoflorurato. Il filato, messo in moto a diverse velocità, è stato fatto transitare attraverso la piuma di plasma. In particolare, si è passati da una velocità di movimentazione di 1 m/min a una di 10 m/min. I risultati ottenuti hanno evidenziato che maggiore è la velocità di movimentazione del filato attraverso la piuma di plasma, minore è il grado di idrofibizzazione raggiungibile sul filato stesso, in quanto minore è il tempo di esposizione del materiale al plasma. Infine, nell’ultima parte dell’attività di tesi, è stata progettata una sorgente DBD, che caratterizzata da una maggiore area di generazione del plasma rispetto alla sorgente plasma jet, consente di incrementare il tempo di esposizione del filato al plasma a parità di velocità di movimentazione del filato.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.
Resumo:
Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming nu(tau) may interact in the Earth's crust and produce a tau lepton by means of charged-current interactions. The tau lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by tau decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is detailed. Systematic uncertainties in the exposure from the detector, the analysis, and the involved physics are discussed. No tau neutrino candidates have been found. For neutrinos in the energy range 2x10(17) eV < E(nu)< 2x10(19) eV, assuming a diffuse spectrum of the form E(nu)(-2), data collected between 1 January 2004 and 30 April 2008 yield a 90% confidence-level upper limit of E(nu)(2)dN(nu tau)/dE(nu)< 9x10(-8) GeV cm(-2) s(-1) sr(-1).
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
A new shadow-ring device for measuring diffuse solar radiation at the surface is presented. In this device the seasonal variation of shadow is followed by moving the detector horizontally. This unique characteristic facilitates its application for long and continuous periods of time. The blocking effect caused by the ring and other related geometric properties are formulated considering the diffuse solar radiation isotropic. The correction factor, shadow size, and ring-detector distance are derived as a function of radius and width of the ring, sun position, and local latitude. The largest blocking occurs during summer, when the ring-detector distance and the shadow width are the smallest, and it is compensated by a smaller blocking effect in the winter period. The performance of the new device is verified comparing daily values of diffuse solar radiation measured simultaneously with a similar device from Kipp & Zonen, Inc. The results show a very good agreement (within 2.5%) between both devices. The new device was also able to reproduce the radiometric properties of the local atmosphere based on 3-yr-long measurements of direct solar radiation using a pyrheliometer. The new device can be applied to estimate daily values of diffuse solar radiation at the surface in the range of 30degreesN-30degreesS with results comparable to other similar apparatuses.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.
Resumo:
The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.
Resumo:
The El Niño/ Southern Oscillation (ENSO) phenomenon is the strongest known natural interannual climate fluctuation. The most recent two extreme ENSO events of 1982/83 and 1997/98 severley hit the socio-economy of main parts of Indonesia. As the climate variability is not homogeneous over the whole Archipelago of Indonesia, ENSO events cause negative precipitation anomalies of diverse magnitude and uration in different regions. Understanding the hydrology of humid tropical catchments is an essential prerequisite to investigate the impact of climate variability on the catchment hydrology. Together with the quantitative assessment of future water resource changes they are essential tools to develop mitigation strategies on a catchment scale. These results can be integrated into long term Integrated Water Resource Management (IWRM) strategies. The general objective of this study is to investigate and quantify the impact of ENSO caused climate variability on the water balance and the implications for water resources of a mesoscale tropical catchment.
Resumo:
Glaciers on King George Island, Antarctica, have shown retreat and surface lowering in recent decades, concurrent with increasing air temperatures. A large portion of the glacier perimeter is ocean-terminating, suggesting possible large mass losses due to calving and submarine melting. Here we estimate the ice discharge into the ocean for the King George Island ice cap. L-band synthetic aperture radar images covering the time-span January 2008 to January 2011 over King George Island are processed using an intensity-tracking algorithm to obtain surface velocity measurements. Pixel offsets from 40 pairs of radar images are analysed and inverted to estimate a weighted average surface velocity field. Ice thicknesses are derived from simple principles of ice flow mechanics using the computed surface velocity fields and in situ thickness data. The maximum ice surface speeds reach mayor que 225 m/yr, and the total ice discharge for the analysed flux gates of King George Island is estimated to be 0.720+/-0.428 Gt/yr, corresponding to a specific mass loss of 0.64+/-0.38 m w.e./yr over the area of the entire ice cap (1127 km2).