997 resultados para Diffuse Ionized-gas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present PIPE3D, an analysis pipeline based on the FIT3D fitting tool, developed to explore the properties of the stellar populations and ionized gas of integral field spectroscopy (IFS) data. PIPE3D was created to provide coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). In this article we describe the different steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical example of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network. Finally, we explore the hypothesis that the properties of the stellar populations and ionized gas of galaxies at the effective radius are representative of the overall average ones, finding that this is indeed the case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of PIPE3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (∼200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR = 1.1 × 10^14/μ L_⨀, where μ is the magnification factor, likely ∼11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7–6), CO(6–5), CO(5–4) detected at IRAM and the CO(2–1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s^−1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H_2 conversion ratio, the H_2 mass is 5.8×10^11/μ M_⨀, of which one third is in a cool component. From the CI(^3P_2−^3 P_1) line we derive a C_I/H_2 number abundance of 6 × 10^−5 similar to that in other ULIRGs. The H_2O_p(2, 0, 2−1, 1, 1) line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) ∼ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’arrivée du spectromètre imageur à transformée de Fourier SITELLE au télescope Canada-France-Hawaï souligne la nécessité d’un calculateur de temps d’exposition permettant aux utilisateurs de l’instrument de planifier leurs observations et leurs demandes de temps de télescope. Une grande partie de mon projet est ainsi le développement d’un code de simulation capable de reproduire les résultats de SITELLE et de son prédecesseur SpIOMM, installé à l’Observatoire du Mont-Mégantic. La précision des simulations est confirmée par une comparaison avec des données SpIOMM et les premières observations de SITELLE. La seconde partie de mon projet consiste en une analyse spectrale de données observationelles. Prenant avantage du grand champ de vue de SpIOMM, les caractéristiques du gaz ionisé (vitesse radiale et intensité) sont étudiées pour l’ensemble de la paire de galaxies en interaction Arp 72. La courbe de rotation dans le visible ainsi que le gradient de métallicité de NGC 5996, la galaxie principale d’Arp 72, sont obtenues ici pour la première fois. La galaxie spirale NGC 7320 est également étudiée à partir d’observations faites à la fois avec SpIOMM et SITELLE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv´en ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ( 10−7) that they constitute plasmas. We outline the criteria required for Alfv´en ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfv´en ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10−6–1 can be obtained as a result of Alfv´en ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfv´en ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a detailed study of the neutral and ionized gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (∼10^7 M_⊙) is detected in a central region of ∼1.75 kpc size. This neutral gas is blueshifted by ∼165 km s^−1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionized warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ∼−30 km s^−1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of surrounding gases on the propagation of room-temperature atmospheric-pressure plasma jets are reported. A highly unusual feather-like plasma plume is observed only when N2 is used as surrounding gas. The He concentration on the axis at the starting point of the feather-like plume is ∼0.85 of the maximum value and is independent on the He flow rates. High-speed optical imaging reveals that dim diffuse plasmas emerge just behind the bright head of the plasma bullet at the starting point of the feather-like plume. These results help tailoring surface exposure in emerging applications of plasma jets in medicine and nanotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the gas sensing behavior of BiNbO4 nanopowder prepared by a low temperature simple solution-based method. Before the sensing behaviour study, the as-synthesized nanopowder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-diffuse reflectance spectroscopy, impedance analysis, and surface area measurement. The NH3 sensing behavior of BiNbO4 was then studied by temperature modulation (50-350 degrees C) as well as concentration modulation (20-140 ppm). At the optimum operating temperature of 325 degrees C, the sensitivity was measured to be 90%. The cross-sensitivity of as-synthesized BiNbO4 sensor was also investigated by assessing the sensing behavior toward other gases such as hydrogen sulphide (H2S), ethanol (C2H5OH), and liquid petroleum gas (LPG). Finally, selectivity of the sensing material toward NH3 was characterized by observing the sensor response with gas concentrations in the range 20-140 ppm. The response and recovery time for NH3 sensing at 120 ppm were about 16 s and about 17 s, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the diffuse X-ray luminosity (L-X) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of L-X with star formation rate (SFR) as L-X alpha SFR2 for SFR greater than or similar to 1 M-circle dot yr(-1), and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the L-X-SFR relation for low SFRs (less than or similar to few M-circle dot yr(-1)). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiempirical molecular orbital calculations on the unimolecular mass spectrometric fragmentation of tetrahydroimidazole-substituted methylene beta-diketones are carried out by Austin Model 1 method, and the calculated results give a strong support to our experimental results reported previously. The optimum of the investigated molecular configuration indicates that the two hydrogen atoms attached to nitrogen atom have different activities due to their chemical environment; the relative energies of the ions in fragmentation pathway of ionized tetrahydroimidazole-substituted methylene beta-diketones provide indirectly an evidence for both the existence of ion/neutral complex and the stabilities of these ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissociation of gaseous metastable ions of m/z 153 and the formation of ions of m/z 139 from the unimolecular fragmentations of ionized tetrahydroimidazole-substituted methylene beta-diketones were examined by tandem mass spectrometry. In addition, some other fragments accompanying the elimination of either an H2O molecule or an CHO. radical were also observed in the collision-induced dissociation spectra of molecular ions of the compounds bearing an aromatic ring. Collision-induced dissociation and isotopic labeling showed that these processes may involve reactions of intermediate ion/neutral complexes and multistep rearrangements. The corresponding mechanisms are discussed. (C) 1997 by John Wiley & Sons, Ltd.