954 resultados para Deviance information criterion


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficiency of analysis using generalized estimation equations is enhanced when intracluster correlation structure is accurately modeled. We compare two existing criteria (a quasi-likelihood information criterion, and the Rotnitzky-Jewell criterion) to identify the true correlation structure via simulations with Gaussian or binomial response, covariates varying at cluster or observation level, and exchangeable or AR(l) intracluster correlation structure. Rotnitzky and Jewell's approach performs better when the true intracluster correlation structure is exchangeable, while the quasi-likelihood criteria performs better for an AR(l) structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energiataseen mallinnus on osa KarjaKompassi-hankkeeseen liittyvää kehitystyötä. Tutkielman tavoitteena oli kehittää lypsylehmän energiatasetta etukäteen ennustavia ja tuotoskauden aikana saatavia tietoja hyödyntäviä matemaattisia malleja. Selittävinä muuttujina olivat dieetti-, rehu-, maitotuotos-, koelypsy-, elopaino- ja kuntoluokkatiedot. Tutkimuksen aineisto kerättiin 12 Suomessa tehdyistä 8 – 28 laktaatioviikon pituisesta ruokintakokeesta, jotka alkoivat heti poikimisen jälkeen. Mukana olleista 344 lypsylehmästä yksi neljäsosa oli friisiläis- ja loput ayshire-rotuisia. Vanhempien lehmien päätiedosto sisälsi 2647 havaintoa (koe * lehmä * laktaatioviikko) ja ensikoiden 1070. Aineisto käsiteltiin SAS-ohjelmiston Mixed-proseduuria käyttäen ja poikkeavat havainnot poistettiin Tukeyn menetelmällä. Korrelaatioanalyysillä tarkasteltiin energiataseen ja selittävien muuttujien välisiä yhteyksiä. Energiatase mallinnettiin regressioanalyysillä. Laktaatiopäivän vaikutusta energiataseeseen selitettiin viiden eri funktion avulla. Satunnaisena tekijänä mallissa oli lehmä kokeen sisällä. Mallin sopivuutta aineistoon tarkasteltiin jäännösvirheen, selitysasteen ja Bayesin informaatiokriteerin avulla. Parhaat mallit testattiin riippumattomassa aineistossa. Laktaatiopäivän vaikutusta energiataseeseen selitti hyvin Ali-Schaefferin funktio, jota käytettiin perusmallina. Kaikissa energiatasemalleissa vaihtelu kasvoi laktaatioviikosta 12. alkaen, kun havaintojen määrä väheni ja energiatase muuttui positiiviseksi. Ennen poikimista käytettävissä olevista muuttujista dieetin väkirehuosuus ja väkirehun syönti-indeksi paransivat selitysastetta ja pienensivät jäännösvirhettä. Ruokinnan onnistumista voidaan seurata maitotuotoksen, maidon rasvapitoisuuden ja rasva-valkuaissuhteen tai EKM:n sisältävillä malleilla. EKM:n vakiointi pienensi mallin jäännösvirhettä. Elopaino ja kuntoluokka olivat heikkoja selittäjiä. Malleja voidaan hyödyntää karjatason ruokinnan suunnittelussa ja seurannassa, mutta yksittäisen lehmän energiataseen ennustamiseen ne eivät sovellu.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple, non-iterative method for component wave delineation from the electrocardiogram (ECG) is derived by modelling its discrete cosine transform (DCT) as a sum of damped cosinusoids. Amplitude, phase, damping factor and frequency parameters of each of the cosinusoids are estimated by the extended Prony method. Different component waves are represented by non-overlapping clusters of model poles in the z plane and thus a component wave is derived by the addition of the inverse transformed (IDCT) impulse responses of the poles in the cluster. Akaike's information criterion (AIC) is used to determine the model order. The method performed satisfactory even in the presence of artifacts. The efficacy of the method is illustrated by analysis of continuous strips of ECG data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of threshold stress on the estimation of the Weibull statistics is discussed in terms of the Akaike information criterion. Numerical simulations show that, if sample data are limited in number and threshold stress is not too large, the two-parameter Weibull distribution is still a preferred choice. For example, the fit of strength data of glass and ceramics to the two- and three-parameter Weibull distributions is compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stress release model, a stochastic version of the elastic-rebound theory, is applied to the historical earthquake data from three strong earthquake-prone regions of China, including North China, Southwest China, and the Taiwan seismic regions. The results show that the seismicity along a plate boundary (Taiwan) is more active than in intraplate regions (North and Southwest China). The degree of predictability or regularity of seismic events in these seismic regions, based on both the Akaike information criterion (AIC) and fitted sensitivity parameters, follows the order Taiwan, Southwest China, and North China, which is further identified by numerical simulations. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.