187 resultados para Deuterated
Resumo:
The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.
Resumo:
The Raman and infrared absorption spectra of sodium ammonium selenate dihydrate (SASD) have been recorded both above and below the ferroelectric transition temperature. The deuterated SASD has also been investigated. The results support the view that while there is only one type of NH4+ ions in the para electric phase, there are two types of NH4+ ions below Tc. The water molecules undergo considerable change and non-equivalent O-H bonds are produced below Tc. The SeO2/4- ions undergo very little change.
Resumo:
Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.
Resumo:
Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent diseases, such as breast and prostate cancers, osteoporosis, and cardiovascular disease. Soy is a rich source of isoflavones, diphenolic plant compounds that have been shown to possess several biological activities. Soy is not part of the traditional Western diet, but many dietary supplements are commercially available in order to provide the proposed beneficial health effects of isoflavones without changing the original diet. These supplements are usually manufactured from extracts of soy or red clover, which is another important source of isoflavones. However, until recently, detailed studies of the metabolism of these compounds in humans have been lacking. The aim of this study was to identify urinary metabolites of isoflavones originating from soy or red clover using gas chromatography - mass spectrometry (GC-MS). To examine metabolism, soy and red clover supplementation studies with human volunteers were carried out. In addition, the metabolism of isoflavones was investigated in vitro by identification of metabolites formed during a 24-h fermentation of pure isoflavones with a human fecal inoculum. Qualitative methods for identification and analysis of isoflavone metabolites in urine and fecal fermentation samples by GC-MS were developed. Moreover, a detailed investigation of fragmentation of isoflavonoids in electron ionization mass spectrometry (EIMS) was carried out by means of synthetic reference compounds and deuterated trimethylsilyl derivatives. After isoflavone supplementation, 18 new metabolites of isoflavones were identified in human urine samples. The most abundant urinary metabolites of soy isoflavones daidzein, genistein, and glycitein were found to be the reduced metabolites, i.e. analogous isoflavanones, a-methyldeoxybenzoins, and isoflavans. Metabolites having additional hydroxyl and/or methoxy substituents, or their reduced analogs, were also identified. The main metabolites of red clover isoflavones formononetin and biochanin A were identified as daidzein and genistein. In addition, reduced and hydroxylated metabolites of formononetin and biochanin A were identified; however, they occurred at much lower levels in urine samples than daidzein or genistein or their reduced metabolites. The results of this study show that the metabolism of isoflavones is diverse. More studies are needed to determine whether the new isoflavonoid metabolites identified here have biological activities that contribute to the proposed beneficial effects of isoflavones on human health. Another task is to develop validated quantitative methods to determine the actual levels of isoflavones and their metabolites in biological matrices in order to assess the role of isoflavones in prevention of chronic diseases.
Resumo:
The first synthesis of long chain 5-n-alkylresorcinols (C15-C25) in whole grains and whole grain products by a novel modification of Wittig reaction is described. 5-n-Alkylresorcinols are phenolic lipids that have various effects on biological systems, such as antioxidant activity and interaction with biological membranes. These compounds are considered as biomarkers of whole grain intake, which is connected with reduced risk of cardiovascular diseases and certain cancers. Novel hapten derivatives of 5-n-alkylresorcinols, potential compounds for immunoanalytical techniques, are prepared by the same procedure utilizing microwave catalysed aqueous Wittig reaction as the key step. The synthesised analogues are required by various analytical, metabolism and bioactivity investigations. Four alternative strategies for producing deuterium polylabelled 5-n-alkylresorcinols are explored. Ring-labelled D3-alkylresorcinols were synthesized by acidic H/D exchange. Side chain -labelled D4-derivative was prepared by a total synthesis approach utilizing D2 deuterogenation of a D2-alkene derivative, and deuterogenation of alkynes was investigated in another total synthesis approach. An -D3-labelled alkylresorcinol is isotopically pure and completely stable under all relevant conditions encountered during analytical work. The labelling of another phenolic component of whole grains was explored. The preparation of D3-ferulic acid and related compounds by way of selective methylation of the precursors is described. The deuterated compounds are useful as standards in the quantification of these natural products in various substances, such as food and human fluids. The pure 5-n-alkylresorcinol analogues prepared were used in in vitro experiments on alkylresorcinol antioxidant activity and antigenotoxicity. The in vitro experiments show that alkylresorcinols act as antioxidants, especially when incorporated into biological systems, but possess lower activity in chemical tests (FRAP and DPPH assay). Whole grain alkylresorcinols are shown for the first time to have a protective effect against copper induced oxidation of LDL, and H2O2 or genotoxic faecal water induced damage on HT29 cells.
Resumo:
During this study different approaches were studied to obtain isoflavone sulphates, glucuronides and sulphoglucuronides. Three isoflavone disulphates (daidzein-di-O-sulphate, genistein-di-O-sulphate and glycitein-di-O-sulphate) and three isoflavonoid disulphates (dihydrodaidzein-di-O-sulphate, dihydrogenistein-di-O-sulphate and equol-di-O-sulphate) were synthesised in moderate yields by using in situ prepared pyridine sulphur trioxide complex, made from chlorosulphonic acid and pyridine. These disulphated compounds can be used to develop analytical procedures and study the biological activity of disulphated products. As the use of the HPLC-MS methods in the field of isoflavones has increased its popularity, deuterated isoflavone disulphates were synthesised. A new microwave assisted deuteration method, using CF3COOD, was developed for this purpose. Three polydeuterated isoflavone disulphates (daidzein-d6-di-O-sulphate, genistein-d4-di-O-sulphate and glycitein-d6-di-O-sulphate) were obtained in moderate yields with high isotopic purity. A synthetic method was developed for daidzein sulphoglucuronide (daidzein-7-O-b-D-glucuronide-4´-O-sulphate), which is a major metabolite in rat bile. By using protection/deprotection steps, the desired product was finally obtained in moderate yield. The method developed can be used in further studies of synthesis of isoflavonoid mixed conjugates. As a part of this study, the structure of naturally occurring daidzein-4´-O-b-glucoside was verified. Different glycosidation methods are reviewed and possible factors affecting the stereoselectivity are discussed. The study of the selective chlorination of isoflavones was a consequence of the observed unexpected chlorination during the synthesis of isoflavone acid chlorides by thionyl chloride. This fascinating phenomenon was investigated further with various isoflavones and as a result a method for producing isoflavone chlorides (8-chlorogenistein, 6,8-dichlorogenistein and 6,8-dichlorobiochanin A) was developed. Protecting groups played a great role during this study, which led to an intensive study on them. A regioselective protection method was developed by using direct introduction of the protecting group (Benzyl and Benzoyl) to positions 7-O or 4´-O in daidzein, genistein and glycitein with t-BuOK as a base in DMF in moderate yields. The possibility of exploiting the transesterification was also investigated. It was observed that by using K2CO3 as a base in DMF, daidzein, genistein and glycitein could be benzoylated at position 4´-O selectively, in the presence of the more acidic 7 hydroxy group. Transesterification also proved to be useful in the glycosidation of isoflavones at position 7-O, starting from 7-O-benzoylated isoflavones. Different carboxylic acid derivatives were synthesised for use either in the development of radioimmunoassay (7-O-carboxymethylglycitein and 4´-O-carboxymethylglycitein) or synthesis of daunorubicin isoflavone derivative for biological testing (7-O-carboxypropylbiochanin A and 7-O-carboxypropylgenistein).
Resumo:
Raman and infrared spectra of hydrazine carbothioamide (HCTA) and its three 15N-labelled molecules (H2N NH CS15NH2, H2 15N15NHCSNH2 and H2 15N15NHCS15NH2) and their deuterated compounds have been obtained. A complete normal coordinate analysis of HCTA has been made and revised assignments are presented. The factor group splittings of HCTA have been interpreted.
Resumo:
The infrared spectra of 2,4-dithiobiuret(DTB), N-deuterated dithiobiuret(DTB-d5) and the laser Raman spectrum of DTB are reported. Normal coordinate treatments of DTB and DTB-d5 have been carried out to aid the assignment of the vibrational frequencies. A trans—cis conformation is favoured for DTB molecule in the solid state.
Resumo:
In-plane vibration modes of 1,2,5- and 1,3,4-oxa- and thia-diazoles, and 1,2,5-selenadiazole have been assigned on the basis of detailed normal coordinate analysis employing data on several deuterated species. In-plane vibration frequencies of two 1,2,3,4-thiatriazole derivatives have been calculated and compared with observed values.
Resumo:
We present a new method for establishing correlation between deuterium and its attached carbon in a deuterated liquid crystal. The method is based on transfer of polarization using the DAPT pulse sequence proposed originally for two spin half nuclei, now extended to a spin-1 and a spin-1/2 nuclei. DAPT utilizes the evolution of magnetization of the spin pair under two blocks of phase shifted BLEW-12 pulses on one of the spins separated by a 90 degree pulse on the other spin. The method is easy to implement and does not need to satisfy matching conditions unlike the Hartmann-Hahn cross-polarization. Experimental results presented demonstrate the efficacy of the method.
Resumo:
The infra-red and Raman spectra of ordinary and deuterated barium chloride dihydrate have been studied to throw light on the intramolecular hydrogen bonds in these two crystals. The frequencies of the stretching, bending and librational modes observed in infra-red and Raman spectra exclude the possibility of at least one of the OH.... Cl hydrogen bonds, contrary to the results of NMR and neutron diffraction studies.
Resumo:
The Urey-Bradley force constants for the in-plane vibrations of the boric acid molecule are calculated using the Wilson's F-G matrix method. They are as follows: KO-H=5·23, KB-O=4·94, HBOH=0·36, {Mathematical expression}, F00=0·68 and FBH=0·98 in units of 105 dynes/cm. Using the force constants, the frequencies are recalculated and the calculated values agree with the observed values satisfactorily. The in-plane vibrational frequencies of deuterated boric acid are also calculated and again satisfactory agreement with the observed values is found.
Resumo:
The results of dielectric studies of deuterated TAAP grown at different temperatures are reported. These results together with the Raman spectral data show that 100% deuteration is possible only if the crystals are grown at low temperatures. The transition temperature continuously increases with increasing deuterium content from 45°C for TAAP to ∼ 87°C for DTAAP indicating that hydrogen bonds play an important role in the ferroelectric transition of this crystal.
Resumo:
The i.r. spectra of selenoacetamide and its N-deuterated species have been recorded The fundamental frequencies of these compounds have been assigned. Force constants derived for thioacetamide and acetamide were transferred to the present compound and a good agreement with the observed frequencies were achieved. The results are discussed in relation to acetamide and thioacetamide.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.