990 resultados para Destruction Bay Formation
Resumo:
The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.
Resumo:
Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.
Resumo:
Rates of organic matter (OM) transformation within the production-destruction cycle of the White Sea were estimated on the basis of measured activity values of redox enzymes of the electron transport system and of hydrolytic enzymes (phosphatase and protease). It was found that OM oxidation processes were the most intensive in the Kandalaksha Bay, while minimum oxidation rates were characteristic of central parts of the Dvina and Onega bays. It was revealed that the highest rates of phosphate mineralization were characteristic of the central part of the sea and near-mouth areas of the Onega and Kandalaksha bays, with the lowest rates in the Dvina Bay. During the period of intense primary production when resources of inorganic phosphorus were practically depleted, high rates of phosphate regeneration were observed. It was shown that populations of micro- and zooplankton in the White Sea were characterized by low activation energies of the principal metabolism reactions (3-6 kcal/mol), which allowed these populations to provide exchange intensity comparable to that of inhabitants of warm waters during all the seasons.
Resumo:
Geological observations, using "free-diving" techniques (Figure I) were made in September, 1960 and March 1961 along two continuous profiles in the outer Kiel Harbor, Germany and at several other spot locations in the Western Baltic Sea. A distinct terrace, cut in Pleistocene glacial till, was found that was covered with varying amounts and types of recent deposits. Hand samples were taken of the sea-floor sediments and grainsize distribution determined for both the sediment as a whole and for its heavy mineral fraction. From the Laboratory and Field observations it was possible to recognize two distinct types of sand; Type I, Sand resulting from transportation over a long period of time and distance and Type 11, Sand resulting from little transportation and found today near to xvhere it was formed. Several criterea related to the agent of movement could be used to classify the nature of the sediment; (1) undisturbed (the sediment Cover of the Pleistocene Terrace is essentially undisturbed), (2) mixed by organisms, (3) transported by water movements (sediment found with ripple marks, etc., and (4) "Scoured" (the movement of individual particles of sediment from around larger boulders causes a slow downward movement or "Creeping" which is due to both the force of gravity and bottom currents. These observations and laboratory studies are discussed concerning their relationship to the formation of residual sediments, the direction of sand transportation, and the intensive erosion on the outer edge of the wave-cut platform found in this part of the Baltic Sea.
Resumo:
A study of quantitative characteristics: phytoplankton photosynthesis (Ph), bacterial assimilation of CO2 (BA), total abundance of bacteria (TAB) and organic matter destruction (D) was carried out in waters the Tugur Bay (tidal level fluctuations up to 7 m) in July-August 1990. Calculations were made of integral indices in some parts: Ph -10-630, BA - 8-29, D - 280-1015 and of total primary production (TPP) - 18-652 mg C/(m2 day). According to obtained data and TAB the ecosystem of the Tugur Bay can be regarded as oligotrophic-mesotrophic one. Dependence on spatial and temporal inhomogeneity of primary productional processes on tide-ebb cycles was found. The role of bacterial relations in the ecosystem of the bay was shown. Portion of ?A in TPP varied from 4 to 44% reaching the maximum in desalinated water during the tide-ebb.
Resumo:
Based on observations and experiments carried out within the White Sea silty-sandy littoral zone in 1994-1997 data on biology of development and behavior of Hydrobia ulvae juveniles over water column and in sediments were obtained. Hydrobiid juveniles 0.125-0.150 mm in size appear in plankton during the second half of June and in two to three weeks they precipitate on sediments reaching 0.300-0.350 mm in size. Specific biological features of the White Sea hydrobiids are a short reproductive period and a short period of juvenile growth related to long under-ice time and decelerated warming of shallow waters. Distribution of juvenile individuals of H. ulvae is primarily determined by hydrodynamics and microtopography of the littoral zone. Redistribution of the juveniles permanently takes place, since all size groups of the juveniles are equally subjected to migration. During the first few weeks after settling mortality of juvenile mudsnails is 85%.
Resumo:
The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C−C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO−SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the 'Fleuve Manche' (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4-2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the 'Fleuve Manche' connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that 'Fleuve Manche' activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant 'Fleuve Manche' activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive 'Fleuve Manche' discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175-160 ka and ca 150-140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive 'Fleuve Manche' discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. 'Fleuve Manche' discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water.