971 resultados para Design procedure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the existing literature, the existence conditions and design procedures for scalar functional observers are available for the cases where the observers’ order p is either p=1 or p=(v-1), where v is the observability index of the matrix pair (C,A). Therefore, if an observer with an order p=1 does not exist, the other available option is to use a higher order observer with p=(v-1). This paper shows that there exists another option that can be used to design scalar linear functional observers of the order lower than the well-known upper bound (v-1). The paper provides the existence conditions and a design procedure for scalar functional observers of order 0≤ p ≤2, and demonstrates the presented results with a numerical example.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the existing literature, the existence conditions and design procedures for scalar functional observers are available for the cases where the observers’ order p is either p=1 or p=(v-1), where v is the observability index of the matrix pair (C,A). Therefore, if an observer with an order p=1 does not exist, the other option is to use a high-order observer with p=(v-1). This paper provides the existence conditions and a design procedure for scalar functional observers of order 0≤p≤2, and demonstrates the presented results with a numerical example. where K, M, E, H and G are constant matrices to be designed. The problem of observing a scalar functional or multi functionals (z(t)∈Rk , k>1) of the state vector has been the subject of numerous papers, and different algorithms have been proposed (see, [1]-[13] and references therein). There are also papers that deal with the order reduction of multi-dimensional functional observers [9,10,12,13]. For scalar functional observers, a well-known Luenberger’s classic result [1] provides an upper bound on the order with p=(v-1). It is interesting to note here that, except for a recent result of Darouach [12,13], little results have been reported on the order reduction for scalar functional observers.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the design of reduced-order linear functional observers for a class of linear time-delay systems of the neutral-type. The type of the observer proposed in this paper is without internal delay and its order is the same as the number of linear functions to be estimated. First, conditions for the existence of the reduced-order functional observers that are capable of asymptotically estimating any given function of the state vector are derived. Then, based on the newly derived existence conditions, a procedure is given for the determination of the observer parameters. The results derived in this paper include a range of linear systems and extend some existing results of linear functional observers to linear neutral delay systems. A numerical example is given to illustrate the design procedure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the problem of estimating simultaneously a linear function of both the state and unknown input of linear system with unknown inputs. By adopting the descriptor system approach, the problem can be conveniently solved. Observers proposed in this paper are of low-order and do not include the derivatives of the outputs. New conditions for the existence of reduced-order observers are derived. A design procedure for the determination of the observer parameters can also be easily derived based on the derived existence conditions

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a method for the design of reduced-order observers for a class of linear time-delay systems of the neutral-type. Conditions for the existence of reduced-order observers that are capable of asymptotically estimating any given function of the state vector are derived. A step-by-step design procedure is given for the determination of the observer parameters. A numerical example is given to illustrate the design procedure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This note provides a comprehensive treatment on the design of functional observers for linear systems having a time-varying delay in the state variables. The designed observers possess attractive features of being low-order and delay-free and hence they are cost effective and easy to implement. Existence conditions are derived and a design procedure for finding low-order observers is given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula, a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observerbased output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an LMI-based algorithm. A numerical example is given to illustrate the design procedure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Designed a multilayer SPR biosensor to improve the detection sensitivity and accuracy simultaneously. Developed a design procedure to identify optimum design parameters for SPR biosensing. Devised a new detection measurement technique based on S-parameters for SPR biosensing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Designing minimum possible order (minimal) observers for Multi-Input Multi-Output (MIMO) linear systems have always been an interesting subject. In this paper, a new methodology to design minimal multi-functional observers for Linear Time-Invariant (LTI) systems is proposed. The approach is applicable, and it also helps in regulating the convergence rate of the observed functions. It is assumed that the system is functional observable or functional detectable, which is less conservative than assuming the observability or detectability of the system. To satisfy the minimality of the observer, a recursive algorithm is provided that increases the order of the observer by appending the minimum required auxiliary functions to the desired functions that are going to be estimated. The algorithm increases the number of functions such that the necessary and sufficient conditions for the existence of a functional observer are satisfied. Moreover, a new methodology to solve the observer design interconnected equations is elaborated. Our new algorithm has advantages with regard to the other available methods in designing minimal order functional observers. Specifically, it is compared with the most common schemes, which are transformation based. Using numerical examples it is shown that under special circumstances, the conventional methods have some drawbacks. The problem partly lies in the lack of sufficient numerical degrees of freedom proposed by the conventional methods. It is shown that our proposed algorithm can resolve this issue. A recursive algorithm is also proposed to summarize the observer design procedure. Several numerical examples and simulation results illustrate the efficacy, superiority and different aspects of the theoretical findings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

© 2014 IEEE. There are three different approaches for functional observer design for Linear Time-Invariant (LTI) systems within the literature. One of the most common methods has been proposed by Aldeen [1] and further developed by others. We found several examples in which the necessary and sufficient conditions for the existence of a functional observer are actually not sufficient for this methodology. This finding motivated us to develop a new methodology for designing functional observers. Our new method provides enough degrees of freedom for the observer design parameter and it improves the weakness within the Aldeen's method in solving the observer coupled matrix equations. In this paper, we present the reason and an example to show the insufficiency of the former method. Furthermore, we present our new developed methodology. An illustrative algorithm also describes the design procedure step by step. A numerical example and simulation results support our findings and performance of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the operational analysis of the single-phase integrated buck-boost inverter. This topology is able to convert the DC input voltage into AC voltage with a high static gain, low harmonic content and acceptable efficiency, all in one single-stage. Main functionality aspects are explained, design procedure, system modeling and control, and also component requirements are detailed. Main simulation results are included, and two prototypes were implemented and experimentally tested, where its results are compared with those corresponding to similar topologies available in literature. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW). Finally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.