968 resultados para Design de Interface do Usuário
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertação apresentada à Escola Superior de Artes Aplicadas do Instituto Politécnico de Castelo Branco em associação com a Faculdade de Arquitetura da Universidade de Lisboa.
Resumo:
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.
Resumo:
Analisa a abordagem do Sense-Making na busca e uso da informação.
Resumo:
This thesis presents a design for an asynchronous interface to Robotiq adaptive gripper s-model. Designed interface is a communication layer that works on top of modbus layer. The design contains function definitions, finite state machine and exceptions. The design was not fully implemented but enough was so that it can be used. The implementation was done with c++ in linux environment. Additionally to the implementation a simple demo program was made to show the interface is used. Also grippers closing speed and force were measured. There is also a brief introduction into robotics and robot grasping.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
O professor apresenta interfaces orientadas a objetos na linguagem de programação Java. Ilustra como e quando são utilizadas as interfaces orientadas a objetos em Java.
Resumo:
A control system was designed to allow humans to manually drive an, usually automatic, two wheeled hovercraft. The size, the mass and the way of driving this vehicle proves to be an issue for the everyday, untrained person to achieve. During this thesis several control layouts were designed with the objective of creating an intuitive and easy way of driving such a vehicle. At the end two where usertested using a simulation (also developed during this thesis) of the said hovercraft set against obstacles similar to those expected to be encountered on its real environment. The two layouts are just slightly apart in performance but numerous issues were found that can be used to redesign a better control layout. This means that no definitive winner was found but a foundation for a better design was indeed found.
Resumo:
The intention of this thesis is to develop a prototype interface that enables an operator to control a bi-wheeled industrial hovercraft that will work within a fusion power plant if the automation system fails. This fusion power plant is part of the ITER project a conjoint effort of various industrialized countries to develop cleaner sources of energy. The development of the interface prototype will be based on situation awareness concepts, which provide a means to understand how human operators perceive the world around, then process that information and make decisions based on the knowledge that they already have and the projected knowledge of the reactions that will occur in the world in response to the actions the operator makes. Two major situation awareness methods will be used, GDTA as a means to discover the requirements the interface needs to solve, and SAGAT to conduct the evaluation on the three interfaces. This technique can isolate the differences an operator has in situation awareness when presented with relevant information given by each of the three interfaces that were built for this thesis. Where the first interface presents the information within the operator’s focal point of view in a pictorial style, the second interface shows the same information within the same point of view has the first interface but only shows it in a textual manner. While the third interface shows the relevant information in the operator’s peripheral field of view. Also SAGAT can provide insight on the question to know if providing the operator with feed-forward information about the stoppage distances of the bi-wheeled industrial hovercraft has any effect on the operator’s decision making.