978 resultados para Derived series
Resumo:
Within the Buttiker dephasing model, the backscattering in the dephasing process is eliminated by setting a proper boundary condition. Explicit expression is carried out for the effective total tunneling probability in the presence of multiple pure dephasing scatterers with partial coherence. The derived formula is illustrated analytically by various limiting cases, and numerically for its application in tunneling through multibarrier systems.
Structural probing of D-fructose derived ligands for asymmetric addition of diethylzinc to aldehydes
Resumo:
A series of new chiral ligands derived from D-fructose have been synthesized and applied in the enantioselective addition of diethylzinc to aldehydes. Comparison of the enantioselectivities obtained with these ligands demonstrated that the catalytic properties are highly dependent upon the structure of ligands, a rational explanation of the structural effects on the catalytic properties is provided. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel series of white light emitting single polymers are prepared by incorporating low contents of quinacridone into the main chain of polyfluorene. This is the first report of quinacridone-containing conjugated polymer. Single layer devices (ITO/PEDOT:PSS/polymer/Ca/Al) are fabricated with these polymers. Energy transfer from fluorene segments to quinacridone unit is observed. Moreover, in the EL process, quinacridone unit can trap electrons and cannot trap holes from fluorene segments.
Resumo:
A novel diamine, 1,4-bis [3-oxy-(N-aminophthalimide)] benzene (BOAPIB), was synthesized from 1,4-bis [3-oxy-(N-phenylphthalimide)] benzene and hydrazine. Its structure was determined via IR, H-1 NMR, and elemental analysis. A series of five-member ring, hydrazine-based polyimides were prepared from this diamine and various aromatic dianhydrides via one-step polycondensation in p-chlorophenol. The inherent viscosities of these polyimides were in the range of 0.17-0.61 dL/g. These polymers were soluble in polar aprotic solvents and phenols at room temperature. Thermogravimetric analysis (TGA) showed that the 5% weight-loss temperatures of the polyimides were near 450 degrees C in air and 500 degrees C in nitrogen. Dynamic mechanical thermal analysis (DMTA) indicated that the glass-transition temperatures (T(g)s) of these polymers were in the range of 265-360 degrees C. The wide-angle X-ray diffraction showed that all the polyimides were amorphous.
Resumo:
A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.
Resumo:
A novel diamine, 3,3'-bis(N-aminophthalimide) (BAPI), was prepared from 3,3'-bis(N-phenylphthalimide). Its structure was determined via IR, H-1 NMR, N-15 NMR, elemental analysis, and single-crystal X-ray diffraction analysis. A series of homo- and copolyimides were synthesized by a conventional one-step method in p-chlorophenol. The characteristic IR absorption bands of hydrazine-based imide groups were near 1780, 1750, 1350, 1100, and 730 cm(-1). The polymers showed good solubility in polar aprotic solvents and phenols at room temperature. The temperatures of 5% weight loss (T-5%) of the polyimides ranged from 495 to 530 degrees C in air. DMTA analyses indicated that the glass-transition temperatures (Tgs) of the polyimides were in the range 371-432 degrees C. These polymers had cutoff wavelengths between 350 and 400 nm. The polyimide films of 6FDA/BAPI and 4,4'-HQPDA/BAPI were colorless; other films were pale yellow or yellow.
Resumo:
A Series of novel homo- and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5-bis (4-aminophenyl) pyridine and 2-(4aminophenyl)-5-aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60-9.64 dL/g (c = 0.5 g/dL in DMAC, 30 degrees C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548-598 degrees C in air. The glass transition temperatures of the PMDA-based samples are in the range of 395-438 degrees C, while the BPDA-based polyimides show two glass transition temperatures (T(g)1 and T(g)2), ranging from 268 to 353 degrees C and from 395 to 418 degrees C, respectively. The flexible films possess tensile modulus in the range of 3.42-6.39 GPa, strength in the range of 112-363 MPa and an elongation at break in the range of 1.2-69%. The strong reflection peaks in the wide-angle X-ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity.
Resumo:
2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.
Resumo:
A series of polyimides (PIs) based on 2,3,3',4'-benzophenonetetracarboxylic dianhydride (2,3,3',4'-BTDA) and 3,3',4,4'-BTDA were prepared by the conventional two-step process. The properties of the 2,3,3',4'-BTDA based polyimides were compared with those of polyimides prepared from 3,3',4,4'-BTDA. It was found that PIs from 2,3,3,4'-BTDA have higher glass transition temperature and better solubility without sacrificing their thermal properties. Furthermore the theological properties of PMR-15 type polyimide resins based on 2,3,3',4'-BTDA showed lower melt viscosity and wider melt flow region (flow window) compared with those from 3,3',4,4'-BTDA. The structure-property relations resulted from isomerism were discussed.
Resumo:
A new type of silicomolybdate-methylsilicate-graphite composite material was prepared by the sol-gel technique and used for the fabrication of an amperometric nitrite sensor. The silicomolybdic anion acts as a catalyst, the graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry, square-wave voltammetry and chronoamperometry were employed to characterize the sensor. The amperometric nitrite sensor exhibited a series of good properties: high sensitivity (1.771 mu A mmol(-1) dm(3)), a short response time (7 s), remarkable long-term stability and especially reproducibility of surface renewal in the event of electrode surface fouling.
Resumo:
4-Hydroxyphthalic anhydride, prepared from 4-chlorophthalic anhydride, was reacted with trimellitic anhydride monoacid chloride or arylene diacid chloride to give aromatic ester-containing dianhydrides (EDAs). These dianhydrides were characterized by element analysis, melt point, FTIR and H-1-NMR. A series of aromatic poly (amic ester acid)s was synthesized by polycondensation of these EDAs and various diamines in polar organic solvent. The inherent viscosity of poly (amic ester acid)s ranged from 0.55 to 0.89 dL/g, indicating the intermediate to higher molecular weight. Polyesterimides having glass transition temperatures between 184-219degreesC were produced by thermal imidization of corresponding poly (amic ester acid)s. These polymers were fairly resistant to organic solvent, but some of them were soluble in phenol solvents. Thermogravimetric analyses revealed that these polyesterimides were stable up to 400degreesC, and the 5% weight loss temperatures were recorded in the range of 432-483degreesC in air atmosphers and 451-490degreesC in nitrogen.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
Optically active 2,2'-bis(2-trifluoro-4-aminophenoxy)-1,1'-binaphthyl and its corresponding racemate were prepared by a nucleophilic substitution reaction of 1,1'-bi-2-naphthol with 2-chloro-5-nitrotrifluorotoluene and subsequently by the reduction of the resulting dinitro compounds. a series of optically active and optically inactive aromatic polyimides also were prepared therefrom, These polymers readily were soluble in common organic solvents such as pyridine, N,N'-dimethylacetamide, and m-cresol and had glass-transition temperatures of 256 similar to 278 degrees C. The specific rotations of the chiral polymers ranged from 167 similar to 258 degrees, and their chiroptical properties also were studied. (C) 1999 John Wiley & Sons Inc.
Resumo:
A series of new optically active aromatic polyimides containing axially dissymmetric 1,1'-binaphthalene-2,2-diyl units were prepared from optically pure (R)-(+)-or (S)-(-)-2,2'-bis(3,4-dicarboxyphenoxy)-1,1'-binaphthalene dianhydrides and various aromatic diamines via a conventional two-step procedure that included ring-opening polycondensation and chemical cyclodehydration. The optically pure isomer of dianhydride was prepared by a nucleophilic substitution of optically pure (R)-(+)or (S)-(-)1,1'-bi-2-naphthol with 4-nitrophthalonitrile in aprotic polar solvent and subsequent hydrolysis of the resultant tetranitrile derivatives, followed by the dehydration of the corresponding tetracarboxylic acids to obtain the dianhydrides. These polymers were readily soluble in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., and have glass transition temperatures of 251-296 degrees C, and 5% weight loss occurs not lower than 480 degrees C. The specific rotations of the optically active polyimides ranged from +196 degrees to +263 degrees, and the optical stability and chiroptical properties of them were also studied. (C) 1997 John Wiley & Sons, Inc.