972 resultados para Depth from focus
Resumo:
Työssä oli tarkoituksena saada toteutettua kolmiulotteiseen visualisointiin soveltuva ohjelmisto mikrokokoluokkaa olevien kappaleiden konenäköjärjestelmään. Työssä jouduttiin myös jatkokehittämään menetelmää kolmiulotteisen kuvan hankkimiseksi yhdellä kameralla mikrokokoisesta kohteesta. Kohteen kolmiulotteisella kuvalla voitaisiin suorittaa automaattista järjestelmäohjausta. Työssä tutkittiin ja selvitettiin laitteistolla saavutettavia tarkkuuksia ja nopeuksia, sen soveltamiseksi esimerkiksi mikromanipulaattorin ohjaamiseen. Lisäksi tutkittiin erilaisia kohteita joissa voitaisiin hyödyntää kolmiulotteista visualisointia. Tällaisia kohteita on kappaleiden laadunvalvonnassa tai niiden tutkimisessa ja esittämisessä. Syvyystiedon keräävällä menetelmällä oli saavutettava riittävä nopeus, jotta sillä voitaisiin tarvittaessa ohjata reaaliaikaisesti toimilaitteita. Menetelmänä käytettiin "Depth from Focusing" -menetelmää, johon VTT:llä oli jo aiemmin kehitetty automaattinen fokusointiohjelmisto. Työn puitteissa suoritettiin laitteisto- ja menetelmäkehitystä järjestelmän nopeuttamiseksi. Visualisoinnin toteuttamisen eri mahdollisuuksia kartoitettiin ja sellainen toteutettiin rakennettuun konenäköjärjestelmään.
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface. © Microscopy Society of America 2013.
Resumo:
Surface defects are extremely important in mechanical characterization of several different materials. Therefore, the analysis of surface finishing is essential for a further simulation of surface mechanical properties in a customized project in materials science and technology. One of the methods commonly employed for such purpose is the statistical mapping of different sample surface regions using the depth from focus technique. The analysis is usually performed directly from the elevation maps which are obtained from the digital image processing. In this paper, the possibility of quantifying the surface heterogeneity of Silicon Carbide porous ceramics by elevation map histograms is presented. The advantage of this technique is that it allows the qualitative or quantitative verification of all surface image fields that cannot be done by using the Surface Plot plugin of image J™ platform commonly used in digital image processing. © 2012 Springer Science+Business Media, LLC.
Resumo:
The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Microsc. Res. Tech. 76:909-913, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The fracture surfaces express the sequence of events of energy release due to crack propagation by linking the relief of the fracture to the loading stresses. This study aims to evaluate the heterogeneity of the critical zone for the advancement of the crack along its entire length in a thermoset composite carbon fiber and epoxy matrix, fractured in DCB testing (Double Cantilever Beam) and ENF (End-Notched Flexure). Investigations were made from image stacks obtained by optical reflection of extended depth from focus reconstruction. The program NIH Image J was used to obtain elevation map and fully focused images of the fracture surface, whose topographies were quantitatively analyzed. The monofractal behavior for DCB samples was assessed as being heterogeneous along the crack front and along the crack for all the conditionings. For the samples fractured in ENF test, there was a strong positive correlation to the natural condition, considering the fibers at 0° for the monofractal dimension and structural dimension (Df and Ds). For fibers at 90° to crack propagation, there was a moderate positive correlation for the textural dimension of natural condition. However, for the samples under ultraviolet condition and those subjected to thermal cycles, there was no correlation between the fractal dimension and fracture toughness in mode II
Resumo:
Retinal blurring resulting from the human eye's depth of focus has been shown to assist visual perception. Infinite focal depth within stereoscopically displayed virtual environments may cause undesirable effects, for instance, objects positioned at a distance in front of or behind the observer's fixation point will be perceived in sharp focus with large disparities thereby causing diplopia. Although published research on incorporation of synthetically generated Depth of Field (DoF) suggests that this might act as an enhancement to perceived image quality, no quantitative testimonies of perceptional performance gains exist. This may be due to the difficulty of dynamic generation of synthetic DoF where focal distance is actively linked to fixation distance. In this paper, such a system is described. A desktop stereographic display is used to project a virtual scene in which synthetically generated DoF is actively controlled from vergence-derived distance. A performance evaluation experiment on this system which involved subjects carrying out observations in a spatially complex virtual environment was undertaken. The virtual environment consisted of components interconnected by pipes on a distractive background. The subject was tasked with making an observation based on the connectivity of the components. The effects of focal depth variation in static and actively controlled focal distance conditions were investigated. The results and analysis are presented which show that performance gains may be achieved by addition of synthetic DoF. The merits of the application of synthetic DoF are discussed.
Resumo:
Measurements on polymers (Teflon FEP and Mylar) have shown that the secondary electron emission from uncharged surfaces exceeds that from surfaces containing a positive surface charge. The reduced emission of charged surfaces is due to recombination between electrons undergoing emission and trapped holes within the charged layer. During the experiments the surface of the material was kept at a negative potential to assure that all secondary electrons reaching the surface from within the material are actually emitted. An analysis of the results yielded the maximum escape depth of the secondary electrons, and showed that the ratio of the maximum escape depth of the secondaries from Mylar to the maximum escape depth from Teflon is almost the same as the ratio of the corresponding second crossover energies of this polymers.
Resumo:
The finite depth of field of a real camera can be used to estimate the depth structure of a scene. The distance of an object from the plane in focus determines the defocus blur size. The shape of the blur depends on the shape of the aperture. The blur shape can be designed by masking the main lens aperture. In fact, aperture shapes different from the standard circular aperture give improved accuracy of depth estimation from defocus blur. We introduce an intuitive criterion to design aperture patterns for depth from defocus. The criterion is independent of a specific depth estimation algorithm. We formulate our design criterion by imposing constraints directly in the data domain and optimize the amount of depth information carried by blurred images. Our criterion is a quadratic function of the aperture transmission values. As such, it can be numerically evaluated to estimate optimized aperture patterns quickly. The proposed mask optimization procedure is applicable to different depth estimation scenarios. We use it for depth estimation from two images with different focus settings, for depth estimation from two images with different aperture shapes as well as for depth estimation from a single coded aperture image. In this work we show masks obtained with this new evaluation criterion and test their depth discrimination capability using a state-of-the-art depth estimation algorithm.
Resumo:
Anaerobic methane-oxidizing microbial communities in sediments at cold methane seeps are important factors in controlling methane emission to the ocean and atmosphere. Here, we investigated the distribution and carbon isotopic signature of specific biomarkers derived from anaerobic methanotrophic archaea (ANME groups) and sulphate-reducing bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) at different cold seep provinces of Hydrate Ridge, Cascadia margin. The special focus was on their relation to in situ cell abundances and methane turnover. In general, maxima in biomarker abundances and minima in carbon isotope signatures correlated with maxima in AOM and sulphate reduction as well as with consortium biomass. We found ANME-2a/DSS aggregates associated with high abundances of sn-2,3-di-O-isoprenoidal glycerol ethers (archaeol, sn-2-hydroxyarchaeol) and specific bacterial fatty acids (C16:1omega5c, cyC17:0omega5,6) as well as with high methane fluxes (Beggiatoa site). The low to medium flux site (Calyptogena field) was dominated by ANME-2c/DSS aggregates and contained less of both compound classes but more of AOM-related glycerol dialkyl glycerol tetraethers (GDGTs). ANME-1 archaea dominated deeper sediment horizons at the Calyptogena field where sn-1,2-di-O-alkyl glycerol ethers (DAGEs), archaeol, methyl-branched fatty acids (ai-C15:0, i-C16:0, ai-C17:0), and diagnostic GDGTs were prevailing. AOM-specific bacterial and archaeal biomarkers in these sediment strata generally revealed very similar d13C-values of around -100 per mill. In ANME-2-dominated sediment sections, archaeal biomarkers were even more 13C-depleted (down to -120 per mill), whereas bacterial biomarkers were found to be likewise 13C-depleted as in ANME-1-dominated sediment layers (d13C: -100 per mill). The zero flux site (Acharax field), containing only a few numbers of ANME-2/DSS aggregates, however, provided no specific biomarker pattern. Deeper sediment sections (below 20 cm sediment depth) from Beggiatoa covered areas which included solid layers of methane gas hydrates contained ANME-2/DSS typical biomarkers showing subsurface peaks combined with negative shifts in carbon isotopic compositions. The maxima were detected just above the hydrate layers, indicating that methane stored in the hydrates may be available for the microbial community. The observed variations in biomarker abundances and 13C-depletions are indicative of multiple environmental and physiological factors selecting for different AOM consortia (ANME-2a/DSS, ANME-2c/DSS, ANME-1) along horizontal and vertical gradients of cold seep settings.
Resumo:
In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649-2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.
Resumo:
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.