980 resultados para Dental Crowns


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study compared five types of chemical catalyzing agents added to 35% hydrogen peroxide gel, with regard to their capacity of intensifying in-office dental bleaching results.Methods: One-hundred and twenty bovine incisors were used, of which the crowns and roots were cut in the incisor-apical direction, to acquire the dimensions of a human central incisor. The specimens were sectioned in the mesiodistal direction by means of two longitudinal cuts, the lingual halves being discarded. The vestibular halves received prophylaxis with a bicarbonate jet, ultrasound cleaning and acid etching on the dentinal portion. Next, the specimens were stored in receptacles containing a 25% instant coffee solution for two weeks. After the darkening period, initial measurement of the shade obtained was taken with the Easy Shade appliance, which allowed it to be quantified by the CIELab* method. The samples were divided into six groups, corresponding to the chemical activator used: a) none (CON); b) ferric chloride (CF); c) ferrous sulphate (SF); d) manganese gluconate (GM); e) manganese chloride (CM); f) mulberry root extract (RA). Each group received three 10-minute applications of the gels containing the respective activating agents. Next, a new shade measurement was made.Results: The Analysis of Variance and Tukey tests (alpha=5%) showed statistically significant differences for the shade perception values (p=0.002). Groups GM, CM and RA showed significantly higher means than the control group.Conclusion: The presence of some chemical activators is capable of resulting in a significant increase in tooth shade variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass ionomer cements (GICs) are largely employed in Dentistry for several applications, such as luting cements for the attachment of crowns, bridges, and orthodontic brackets as well as restorative materials. The development of new glass systems is very important in Dentistry to improve of the mechanical properties and chemical stability. The aim of this study is the preparation of two glass systems containing niobium in their compositions for use as GICs. Glass systems based on the composition SiO2,Al2O3-Nb2O5-CaO were prepared by chemical route at 700degreesC. The XRD and DTA results confirmed that the prepared materials are glasses. The structures of the obtained glasses were compared to commercial material using FTIR, Al-27 and Si-29 MAS-NMR. The analysis of FTIR and MAS-NMR spectra indicated that the systems developed and commercial material are formed by SiO4 and AlO4 linked tetrahedra. These structures are essential to get the set time control and to have cements. These results encourage further applications of the experimental glasses in the formation of GICs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AimTo evaluate prospectively the clinical and radiographic outcomes after 2 years of loading of 6 mm long moderately rough implants supporting single crowns in the posterior regions.Material and methodsForty SLActive Straumann (R) short (6 mm) implants were placed in 35 consecutively treated patients. Nineteen implants, 4.1 mm in diameter, and 21 implants, 4.8 mm in diameter, were installed. Implants were loaded after 6 weeks of healing. Implant survival rate, marginal bone loss and resonance frequency analysis (RFA) were evaluated at different intervals. The clinical crown/implant ratio was also calculated.ResultsTwo out of 40 implants were lost before loading. Hence, the survival rate before loading was 95%. No further technical or biological complications were encountered during the 2-year follow-up. The mean marginal bone loss before loading was 0.34 +/- 0.38 mm. After loading, the mean marginal bone loss was 0.23 +/- 0.33 and 0.21 +/- 0.39 mm at the 1- and 2-year follow-ups. The RFA values increased between insertion (70.2 +/- 9) and the 6-week evaluation (74.8 +/- 6.1). The clinical crown/implant ratio increased with time from 1.5 at the delivery of the prosthesis to 1.8 after 2 years of loading.ConclusionShort implants (6 mm) with a moderately rough surface loaded early (after 6 weeks) during healing yielded high implant survival rates and moderate loss of bone after 2 years of loading. Longer observation periods are needed to draw more definite conclusions on the reliability of short implants supporting single crowns.To cite this article:Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study.Clin. Oral Impl. Res. 21, 2010; 937-943.doi: 10.1111/j.1600-0501.2010.01942.x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit.