997 resultados para Dental Bonding, Chemically-Cured


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of removing dentin collagen exposed by acid etching on the microleakage of bonded restorations with and without flowable composite application and submitted to thermocycling and long-term water storage. Materials and Methods: Standardized Class V cavities were prepared in 180 bovine incisors. They were randomly assigned to three groups according to the adhesive technique used. Conventional group (C): Single Bond was applied according to the manufacturer's instructions and Z250 composite was placed. Hypochlorite group (H): After acid etching a 10% NaOCl aqueous solution was applied for 1 min, then Single Bond and Z250 were applied. Hypochlorite and Flowable group (HF): Similar to group H, but following adhesive application, a thin layer of Natural Flow flowable composite was applied before the Z250. Each group was divided into three subgroups (0, 6, 12), which remained immersed in distilled water for 24 h or 6 or 12 months and underwent 500, 1500 or 2500 thermal cycles, respectively. At the end of each storage time, the specimes were stained with silver nitrate, decalcified, immersed in methyl salicylate for clearing and observed under a stereomicroscope to determine microleakage (scores 0 to 4). The data were analyzed using the Kruskal-Wallis and the Multiple Comparison Tests (α = 0.05). Results: After 12 months, every group showed significant increases in microleakage. There was no significant difference between Groups H and HF for the three different periods of time, but they showed statistically less microleakage than Group C. Conclusion: The removal of dentinal collagen reduced the marginal microleakage when compared to the conventional technique. The use of the flowable composite did not produce significant effects. No technique was completely effective in preventing microleakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To measure 2-week postoperative sensitivity in Class II composite restorations placed with a self-etching adhesive (Clearfil SE Bond) or a total-etch adhesive (Prime&Bond NT) with or without a flowable composite as cervical increment. Method and materials: Upon approval by the University of Guarulhos Committee on Human Subjects, 100 restorations were inserted in 46 patients who required Class II restorations in their molars and premolars. Enamel and dentin walls were conditioned with a self-etching primer (for Clearfil SE Bond) or etched with 34% phosphoric acid (for Prime&Bond NT). A 1- to 2-mm-thick increment of a flowable composite (Filtek Flow) was used in the proximal box in 50% of the restorations of each adhesive. Preparations were restored with a packable composite (Surefil). The restorations were evaluated preoperatively and 2 weeks postoperatively for sensitivity to cold, air, and masticatory forces using a visual analog scale. Marginal integrity of the accessible margins was also evaluated. Statistical analysis used a mixed linear model with subject as a random effect. Results: Ninety-eight teeth from 44 subjects were observed at 2 weeks. The type of adhesive and use of flowable composite had no significant effects or interaction for any of the four outcomes of interest, ie, change from baseline to 2 weeks in sensitivity and response time for the cold or air stimulus. For the air stimulus, the overall average change from baseline was not significant for either sensitivity or response time. For the cold stimulus, the overall average change from baseline was significant for both sensitivity and response time. No case of sensitivity to masticatory forces was observed. Conclusion: No differences in postoperative sensitivity were observed between a self-etch adhesive and a total-etch adhesive at 2 weeks. The use of flowable composite did not decrease postoperative sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. Materials and Methods: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1 - sandblasting with 110-μm aluminum oxide particles; G2 - Rocatec System: tribochemicai silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3 - CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37°C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm 2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. Results: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8 ± 3.2; (G2) 30.6 ± 4.5; (G3) 33.0 ± 5.0. G2 and 63 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. Conclusion: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study tested the null hypothesis that different treatments of saliva-contaminated substrate would not affect microgap formation at the dentin walls of bonded restorations. Materials and Methods: Forty freshly extracted human molars received standardized Class V preparations on buccal and lingual surfaces. The specimens were assigned to four experimental groups (n = 20): [G1] no contamination (control group), [G2] saliva contamination (10 s) after etching followed by 5 s air stream; [G3] saliva contamination after etching and rinsed for 10 s; and [G4] re-etching for 10 s after saliva contamination. All specimens were restored with a one-bottle adhesive (Single Bond, 3M ESPE) and microhybrid composite resin (Filtek Z250, 3M ESPE) according to the manufacturer's instructions. The specimens were thermocycled, sectioned through the center of the restoration, and then processed for SEM. Microgaps were measured at the axial wall at 1500X magnification. The data were submitted to Kruskal-Wallis nonparametric statistical analysis at p < 0.05. Results: The data revealed that different groups resulted in a statistically significant difference (p < 0.01) in gap formation. Air drying [G2] and rinsing [G3] the saliva-contaminated dentin resulted in similar microgap values (p > 0.05). However, re-etching the dentin after saliva contamination [G4] increased microgap formation (p < 0.05) when compared with the groups G1 and G2. Although air drying and rinsing produced results comparable to noncontaminated dentin, the presence of microgaps was not completely eliminated. Conclusion: Contaminated saliva did not prevent hybrid layer formation; however, it did reduce the adaptation of the restorative material to bonded surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the use of air abrasion has grown in pediatric dentistry, the aim of this study was to evaluate, by means of shear bond strength testing, the need to use the total etching technique or self-etching primers on dentin of primary teeth after air abrasion. Twenty-five exfoliated primary molars had their occlusal dentin exposed by trimming and polishing. Specimens were treated by: Air abrasion + Scotchbond MultiPurpose adhesive (G1); 37% phosphoric acid + Scotchbond MP adhesive (G2); Clearfil SE (G3); Air abrasion ( 37% phosphoric acid + Scotchbond MP adhesive (G4); Air abrasion + Clearfil SE (G5). On the treated surface, a cylinder of 2 mm by 6 mm was made using a composite resin (Z100). Duncan's test showed that: (G2 = G3 = G5) > (G1 = G4). The use of a selfetching primer on air abraded dentin is recommended to obtain higher bond strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the pullout strength of a glass fiber-reinforced composite post (glass FRC) cemented with three different adhesive systems and one resin cement. The null hypothesis was that pullout strengths yielded by the adhesive systems are similar. Materials and Methods: Thirty bovine teeth were selected. The size of the specimens was standardized at 16 mm by sectioning off the coronal portion and part of the root. The specimens were divided into three groups, according to the adhesive system, which were applied following the manufacturers' instructions: G1, ScotchBond Multi-Purpose Plus; G2, Single Bond; G3, Tyrian SPE/One-Step Plus. The glass FRCs (Reforpost) were etched with 37% H3PO4 for 1 min and silanized (Porcelain Primer). Thereafter, they were cemented with the dual resin cement En-Force. The specimens were stored for 24 h, attached to an adapted device, and submitted to the pullout test in a universal testing machine (1 mm/min). The data were submitted to the one-way ANOVA and Tukey's test (α = 0.05). Results: G1 (30.2 ± 5.8 Kgf) displayed the highest pullout strength (p < 0.001) when compared to G2 (18.6 ± 5.8 Kgf) and G3 (14.3 ± 5.8 Kgf), which were statistically similar. Analysis of the specimens revealed that all failures occurred between the adhesive system and the root dentin (pullout of the post cement), regardless of group. Conclusion: The multiple-bottle, total-etch adhesive system provided higher pullout strength of the glass FRC when compared to the single-bottle, total-etch, and single-step self-etching adhesive systems. The null hypothesis was rejected (p < 0.001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the penetration of an aggressive self-etching adhesive system at refrigerated and room temperatures into ground and unground enamel surfaces. Thirty extracted human teeth were used to measure adhesive penetration into enamel by light microscopy analysis (x400). The unground enamel surfaces were cleaned with pumice and water using a rotary dental brush. For each specimen, part of the unground enamel was manually ground and part was kept intact. A self-etch adhesive was evaluated for its ability to penetrate ground and unground enamel surfaces at room temperature (25 degrees C), at 30 minutes after removal from the refrigerator, and immediately after removal from the refrigerator (6 degrees C). Data were analyzed using variance and the Tukey test, which revealed significant differences in length of penetration of this material when applied on ground and unground enamel surfaces and between the different temperatures used (P > .05). The self-etching system used in this study had significantly lower penetration into unground enamel and at 6 degrees C (P < .05). No statistical difference was found between the interactions of these factors. It was concluded that the self-etching system produced the best penetration into ground enamel surface at room temperature (25 degrees C) and at 30 minutes after removing the specimens from the refrigerator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the potential effects of denture base resin water storage time and an effective denture disinfection method (microwave irradiation at 650 W for 6 minutes) on the torsional bond strength between two hard chairside reline resins (GC Reline and New Truliner) and one heat-polymerizing denture base acrylic resin (Lucitone 199). Materials and Methods: Cylindrical (30 x 3.9 mm) denture base specimens (n = 160) were stored in water at 37°C (2 or 30 days) before bonding. A section (3.0 mm) was removed from the center of the specimens, surfaces prepared, and the reline materials packed into the space. After polymerization, specimens were divided into four groups (n = 10): Group 1 (G1) - tests performed after bonding; Group 2 (G2) - specimens immersed in water (200 ml) and irradiated twice (650 W for 6 minutes); Group 3 (G3) - specimens irradiated daily until seven cycles of disinfection; Group 4 (G4) - specimens immersed in water (37°C) for 7 days. Specimens were submitted to a torsional test (0.1 Nm/min), and the torsional strengths (MPa) and the mode of failure were recorded. Data from each reline material were analyzed by a two-way analysis of variance, followed by Neuman-Keuls test (p = 0.05). Results: For both Lucitone 199 water storage periods, before bonding to GC Reline resin, the mean torsional strengths of G2 (2 days - 138 MPa; 30 days - 132 MPa), G3 (2 days - 126 MPa; 30 days - 130 MPa), and G4 (2 days - 130 MPa; 30 days - 137 MPa) were significantly higher (p < 0.05) than G1 (2 days - 108 MPa; 30 days - 115 MPa). Similar results were found for Lucitone 199 specimens bonded to New Truliner resin, with G1 specimens (2 days - 73 MPa; 30 days - 71 MPa) exhibiting significantly lower mean torsional bond strength (p < 0.05) than G2 (2 day - 86 MPa; 30 days - 90 MPa), G3 (2 days - 82 MPa; 30 days - 82 MPa), and G4 specimens (2 days - 78 MPa; 30 days - 79 MPa). The adhesion of both materials was not affected by water storage time of Lucitone 199 (p > 0.05). GC reline showed a mixed mode of failure (adhesive/cohesive) and New Truliner failed adhesively. Conclusions: Up to seven microwave disinfection cycles did not decrease the torsional bond strengths between the hard reline resins, GC Reline and New Truliner to the denture base resin Lucitone 199. The effect of additional disinfection cycles on reline material may be clinically significant and requires further study. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.