956 resultados para Demand Model
Resumo:
This paper analyzes the nature of health care provider choice inthe case of patient-initiated contacts, with special reference toa National Health Service setting, where monetary prices are zeroand general practitioners act as gatekeepers to publicly financedspecialized care. We focus our attention on the factors that mayexplain the continuously increasing use of hospital emergencyvisits as opposed to other provider alternatives. An extendedversion of a discrete choice model of demand for patient-initiatedcontacts is presented, allowing for individual and town residencesize differences in perceived quality (preferences) betweenalternative providers and including travel and waiting time asnon-monetary costs. Results of a nested multinomial logit model ofprovider choice are presented. Individual choice betweenalternatives considers, in a repeated nested structure, self-care,primary care, hospital and clinic emergency services. Welfareimplications and income effects are analyzed by computingcompensating variations, and by simulating the effects of userfees by levels of income. Results indicate that compensatingvariation per visit is higher than the direct marginal cost ofemergency visits, and consequently, emergency visits do not appearas an inefficient alternative even for non-urgent conditions.
Resumo:
The need for integration in the supply chain management leads us to considerthe coordination of two logistic planning functions: transportation andinventory. The coordination of these activities can be an extremely importantsource of competitive advantage in the supply chain management. The battle forcost reduction can pass through the equilibrium of transportation versusinventory managing costs. In this work, we study the specific case of aninventory-routing problem for a week planning period with different types ofdemand. A heuristic methodology, based on the Iterated Local Search, isproposed to solve the Multi-Period Inventory Routing Problem with stochasticand deterministic demand.
Resumo:
This research report illustrates and examines new operation models for decreasing fixed costs and transforming them into variable costs in the field of paper industry. The report illustrates two cases – a new operation model for material logistics in maintenance and an examination of forklift truck fleet outsourcing solutions. Conventional material logistics in maintenance operation is illustrated and some problems related to conventional operation are identified. A new operation model that solves some of these problems is presented including descriptions of procurement and service contracts and sources of added value. Forklift truck fleet outsourcing solutions are examined by illustrating the responsibilities of a host company and a service provider both before and after outsourcing. The customer buys outsourcing services in order to improve its investment productivity. The mechanism of how these services affect the customer company’s investment productivity is illustrated.
Resumo:
This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.
Resumo:
Rapport de recherche
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows LIS to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution, the results are independent of the graph structure that models the peer network of agents whose decisions influence each other. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
[EN] In this paper, we have used Geographical Information Systems (GIS) to solve the planar Huff problem considering different demand distributions and forbidden regions. Most of the papers connected with the competitive location problems consider that the demand is aggregated in a finite set of points. In other few cases, the models suppose that the demand is distributed along the feasible region according to a functional form, mainly a uniform distribution. In this case, in addition to the discrete and uniform demand distributions we have considered that the demand is represented by a population surface model, that is, a raster map where each pixel has associated a value corresponding to the population living in the area that it covers...
Resumo:
Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.
Resumo:
This study presents a model of economic growth based on saturating demand, where the demand for a good has a certain maximum amount. In this model, the economy grows not only by the improvement in production efficiency in each sector, but also by the migration of production factors (labor in this model) from demand-saturated sectors to the non-saturated sector. It is assumed that the production of a brand-new good will begin after all the existing goods are demand-saturated. Hence, there are cycles where the production of a new good emerges followed by the demand saturation of that good. The model then predicts that should the growth rate be stable and positive in the long run, the above-mentioned cycle must become shorter over time. If the length of cycles is constant over time, the growth rate eventually approaches zero because the number of goods produced grows.