986 resultados para Delayed Type Hypersensitivity
Resumo:
In Amazonian Brazil, the Cebus apella monkey (Primates: Cebidae) has been associated with the enzootic cycle of Leishmania (V.) shawi, a dermotropic parasite causing American cutaneous leishmaniasis (ACL). It has also been successfully used as animal model for studying cutaneous leishmaniasis. In this work, there has been investigated its susceptibility to experimental Leishmania (L.) infantum chagasi-infection, the etiologic agent of American visceral leishmaniasis (AVL). There were used ten C. apella specimens, eight adult and two young, four males and six females, all born and raised in captivity. Two experimental infection protocols were performed: i) six monkeys were inoculated, intra-dermal via (ID), into the base of the tail with 2 x 10(6) promastigotes forms from the stationary phase culture medium; ii) other four monkeys were inoculated with 3 x 10(7) amastigotes forms from the visceral infection of infected hamsters by two different via: a) two by intravenous via (IV) and, b) other two by intra-peritoneal via (IP). The parameters of infection evaluation included: a) clinical: physical exam of abdomen, weigh and body temperature; b) parasitological: needle aspiration of the bone-marrow for searching of amastigotes (Giemsa-stained smears) and promastigotes forms (culture medium); c) immunological: Indirect fluorescence antibody test (IFAT) and, Delayed-type hypersensitivity (DTH). In the six monkeys ID inoculated (promastigotes forms) all parameters of infection evaluation were negative during the 12 months period of follow-up. Among the four monkeys inoculated with amastigotes forms, two IV inoculated showed the parasite in the bone-marrow from the first toward to the sixth month p.i. and following that they cleared the infection, whereas the other two IP inoculated were totally negative. These four monkeys showed specific IgG-antibody response since the third month p.i. (IP: 1/80 and IV: 1/320 IgG) toward to the 12th month (IP: 1/160 and IV: 1/5120). The DTH-conversion occurred in only one IV inoculated monkey with a strong (30 mm) skin reaction. Considering these results, we do not encourage the use of C. apella monkey as animal model for studying the AVL.
Resumo:
This study aimed to estimate the prevalence of paracoccidioidal infection by intradermal reaction (Delayed-Type Hypersensitivity, DTH) to Paracoccidioides brasiliensis in rural areas in Alfenas, Southern Minas Gerais (MG) State, Brazil, and to assess risk factors (gender, occupation, age, alcohol intake and smoking) associated with infection. We conducted a population-based cross-sectional study using intradermal tests with gp 43 paracoccidioidin in 542 participants, who were previously contacted by local health agents and so spontaneously attended the test. Participants underwent an interview by filling out a registration form with epidemiological data and were tested with an intradermal administration of 0.1 mL of paracoccidioidin in the left forearm. The test was read 48 hours after injection and was considered positive if induration was greater than or equal to 5 mm. Out of 542 participants, 46.67% were positive to the skin test. Prevalence increased in accordance with an increase of age. There was statistical significance only for males. Occupation, alcohol intake and smoking habits were not significantly associated with the risk of paracoccidioidomycosis infection. There is relevance of paracoccidioidomycosis infection in such rural areas, which suggests that further epidemiological and clinical studies on this mycosis should be done in the southern part of Minas Gerais State.
Resumo:
High molecular weight components from Ascaris suum extract suppress ovalbumin-specific immunity in mice. In IFN-γ-deficient mice, ovalbumin-specific delayed-type hypersensitivity reactions are more strongly downregulated by these suppressive components. Here, the cellularity of the delayed-type hypersensitivity reaction in IFN-γ-deficient mice and the increased downregulation induced by Ascaris suum components were analyzed. IL-12p40-dependent neutrophilic influx was predominant. Suboptimal doses of the suppressive fraction from this nematode completely inhibited the hypersensitivity reaction, thus indicating intensification of the immunosuppression under conditions of intense recruitment of IFN-γ-independent neutrophils.
Resumo:
The results presented in this review summarize a seirs of experiments designed to characterize the murine T cell imune response to the protozoan parasite Leishmania tropica. Enriched T cell populations and T cell clones specific for L. tropica antigens were derived from lymph nodes of primed mice and maintained in continous culture in vitro. These T lymphocytes were shown (A) to express the Lyt 1+ 3- cell surface phenotype, (B) to proliferate specifically in vitro in response to parasite antigens, together with a source of irradiated syngeneic macrophages, (C) to transfer antigen-specific delayed-type hypersensitivity (DTH) responses to normal syngeneic mice, (D) to induce specific activation of parasitized macrophages in vitro resulting in the destruction of intracellular parasites, (E) to provide specific helper activity for antibody responses in vitro in a hapten-carrier system. Protection studies using these defiened T cell populations should allow the characterization of parasite antigen(s) implicated in the induction of cellular immune responses beneficial for the host.
Resumo:
Experimental systems to assay immunity against Trypanosoma cruzi usually demonstrate partial resistance without excluding the establishment of sub-patent infections in protected animals. To test whether Swiss mice immunized with attenuated parasites might develop complete resistance against virulent T. cruzi, experiments were performed involving challenge with low numbers of parasites, enhancement of local inflammation and the combination of natural and acquired resistance. Absence of infection was established after repeated negative parasitological tests (including xenodiagnosis and hemoculture), and lack of lytic antibody was tested by complement mediated lysis. Immunization with 10(7) attenuated epimastigotes conferred protection against the development of high levels of parasitemia after challenge with Tulahuen strain, but was unable to reduce the number of infected animals. However, when a strong, delayed-type hypersensitivity reaction was triggered at the site of infection by injecting a mixture of virulent and attenuated T. cruzi, a significant proportion of immunized animals remained totally free of virulent infection. The same result was obtained when the immunization experiment was performed in four month old Swiss mice, displaying a relatively high natural resistance and challenged with wild, vector-borne parasites. These experiments demonstrate that complete resistance against T. cruzi can be obtained in a significant proportion of animals, under conditions which replicate natural, vector delivered infection by the parasite.
Resumo:
PURPOSE: To test the efficiency of locally administrated tresperimus in experimental autoimmune uveoretinitis (EAU). METHODS: EAU was induced in Lewis rats by S-antigen (S-Ag) immunization. Three intravitreal injections of tresperimus (prevention or prevention/treatment protocols) were performed at different time points after immunization. The pharmacokinetics of tresperimus was evaluated in the ocular tissues and plasma. The in vitro effect of tresperimus was evaluated on macrophages. EAU was graded clinically and histologically. Blood ocular barrier permeability was evaluated by protein concentration in ocular fluids. Immune response to S-Ag was examined by delayed type hypersensitivity, the expression of inflammatory cytokines in lymph nodes, ocular fluids and serum by multiplex ELISA, and in ocular cells by RT-PCR. RESULTS: In vitro, tresperimus significantly reduced the production of inflammatory cytokines by lipopolysaccharide-stimulated macrophages. In vivo, in the treatment protocol, efficient tresperimus levels were measured in the eye but not in the plasma up to 8 days after the last injection. Tresperimus efficiently reduced inflammation, retinal damage, and blood ocular barrier permeability breakdown. It inhibited nitric oxide synthase-2 and nuclear factor κBp65 expression in ocular macrophages. IL-2 and IL-17 were decreased in ocular media, while IL-18 was increased. By contrast, IL-2 and IL-17 levels were not modified in inguinal lymph nodes draining the immunization site. Moreover, cytokine levels in serum and delayed type hypersensitivity to S-Ag were not different in control and treated rats. In the prevention/treatment protocol, ocular immunosuppressive effects were also observed. CONCLUSIONS: Locally administered tresperimus appears to be a potential immunosuppressive agent in the management of intraocular inflammation.
Resumo:
Both Leishmania major and L. braziliensis induce cutaneous leishmaniasis in BALB/c mice. Whereas BALB/c mice die of infection with L. major, they cure an infection with L. braziliensis. We report here that after curing an infection with L. braziliensis, BALB/c mice are resistant to challenge with L. major. When challenged with L. major, L. braziliensis pre-treated BALB/c mice mounted a delayed-type hypersensitivity response to L. major and produced high amounts of interferon-g (IFN-g ) but low amounts of interleukin-4. The IFN-g produced by the L. braziliensis pre-infected mice was involved in the protection seen against L. major challenge since treating the mice with a neutralizing anti-IFN-g abrogated the protection. This suggests that cross-reactive antigen epitopes exist between L. braziliensis and L. major and that pre-infection with L. braziliensis primes BALB/c mice to epitopes on L. major that can elicit a protective Th1 response to the parasite.
Resumo:
Positive Montenegro's skin test is a delayed type hypersensitivity reaction widely used as indicative of previous infection with Leishmania in both humans and dogs. Montenegro's antigen consists of a crude Leishmania antigen solution, usually containing thimerosal as preserving agent. In this work it is shown that a large proportion of dogs (11 out of 56) examined in an endemic area of leishmaniasis presented induration at the site of injection of a diluent containing thimerosal alone. This clearly demonstrates that thimerosal leads to a high number of false positive skin reactions in dogs and that its use in Montenegro's skin test antigenic preparations should be avoided.
Resumo:
Seven rhesus macaques were infected intradermally with 10(7) promastigotes of Leishmania (Leishmania) major. All monkeys developed a localized, ulcerative, self-healing nodular skin lesion at the site of inoculation of the parasite. Non-specific chronic inflammation and/or tuberculoid-type granulomatous reaction were the main histopathological manifestations of the disease. Serum Leishmania-specific antibodies (IgG and IgG1) were detected by ELISA in all infected animals; immunoblot analyses indicated that numerous antigens were recognized. A very high degree of variability was observed in the parasite-specific cell-mediated immune responses [as detected by measuring delayed-type hypersensitivity (DTH) reaction, in vitro lymphocyte proliferation, and gamma interferon (IFN-gamma) production] for individuals over time post challenge. From all the recovered monkeys (which showed resolution of the lesions after 11 weeks of infection), 57.2% (4/7) and 28.6% (2/7) animals remained susceptible to secondary and tertiary infections, respectively, but the disease severity was altered (i.e. lesion size was smaller and healed faster than in the primary infection). The remaining monkeys exhibited complete resistance (i.e. no lesion) to each rechallenge. Despite the inability to consistently detect correlates of cell-mediated immunity to Leishmania or correlation between resistance to challenge and DTH, lymphocyte transformation or IFN-gamma production, partial or complete acquired resistance was conferred by experimental infection. This primate model should be useful for measuring vaccine effectiveness against the human disease.
Resumo:
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Resumo:
We have compared the efficacy of two Leishmania (Leishmania) major vaccines, one genetically attenuated (DHFR-TS deficient organisms), the other inactivated [autoclaved promastigotes (ALM) with bacillus Calmete-Guérin (BCG)], in protecting rhesus macaques (Macaca mulatta) against infection with virulent L. (L.) major. Positive antigen-specific recall proliferative response was observed in vaccinees (79% in attenuated parasite-vaccinated monkeys, versus 75% in ALM-plus-BCG-vaccinated animals), although none of these animals exhibited either augmented in vitro gamma interferon (IFN-g) production or positive delayed-type hypersensitivity (DTH) response to the leishmanin skin test prior to the challenge. Following challenge, there were significant differences in blastogenic responses (p < 0.05) between attenuated-vaccinated monkeys and naïve controls. In both vaccinated groups very low levels of antibody were found before challenge, which increased after infective challenge. Protective immunity did not follow vaccination, in that monkeys exhibited skin lesion at the site of challenge in all the groups. The most striking result was the lack of pathogenicity of the attenuated parasite, which persisted in infected animals for up to three months, but were incapable of causing disease under the conditions employed. We concluded that both vaccine protocols used in this study are safe in primates, but require further improvement for vaccine application.
Resumo:
Domestic dogs are considered to be the main reservoirs of zoonotic visceral leishmaniasis. In this work, we evaluated a protocol to induce Leishmania infantum/Leishmania chagasi-specific cellular and humoral immune responses in dogs, which consisted of two injections of Leishmania promastigote lysate followed by a subcutaneous inoculation of viable promastigotes. The primary objective was to establish a canine experimental model to provide positive controls for testing immune responses to Leishmania in laboratory conditions. After inoculation of viable promastigotes, specific proliferative responses of peripheral blood mononuclear cells (PBMCs) to either Leishmania lysate or recombinant proteins, the in vitro production of interferon-γ by antigen-stimulated PBMCs and a significant increase in circulating levels of anti-Leishmania antibodies were observed. The immunized dogs also displayed positive delayed-type hypersensitivity reactions to Leishmania crude antigens and to purified recombinant proteins. An important finding that supports the suitability of the dogs as positive controls is that they remained healthy for the entire observation period, i.e., more than seven years after infection. Following the Leishmania antigen lysate injections, the infection of dogs by the subcutaneous route appears to induce a sustained cellular immune response, leading to an asymptomatic infection. This provides a useful model for both the selection of immunogenic Leishmania antigens and for immunobiological studies on their possible immunoprotective activities.
Resumo:
Re-infections with Trypanosoma cruzi are an aggravating factor for Chagas disease morbidity. The Colombian strain of T. cruzirepresents multiclonal populations formed by clonally propagating organisms with different tropisms and degrees of virulence. In the present study, the influence of successive inoculations with clones of the Colombian strain, exhibiting different degrees of virulence, on chronic myocarditis and the humoral and cellular immune responses (Col-C1 high virulence, Col-C8 medium virulence and Col-C5 low virulence) were demonstrated. Mice from three groups with a single infection were evaluated during the acute (14th-30th day) and chronic phases for 175 days. An immunofluorescence assay, ELISA and delayed type hypersensitivity (DTH) cutaneous test were also performed. Mice with a triple infection were studied on the 115th-175th days following first inoculation. The levels of IgM and IgG2a were higher in the animals with a triple infection. DTH showed a higher intensity in the inflammatory infiltrate based on the morphometric analysis during a 48 h period of the triple infection and at 24 h with a single infection. The histopathology of the heart demonstrated significant exacerbation of cardiac inflammatory lesions confirmed by the morphometric test. The humoral responses indicate a reaction to the triple infection, even with clones of the same strain.
Resumo:
Mice with homologous disruption of the gene coding for either the p35 subunit or the p40 subunit of interleukin-12 (IL-12) and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in resistance to infection and the differentiation of functional CD4+ T cell subsets in vivo. Wild-type 129/Sv/Ev mice are resistant to infection with L. major showing only small lesions which resolve spontaneously within a few weeks and develop a type 1 CD4+ T cell response. In contrast, mice lacking bioactive IL-12 (IL-12p35-/- and IL-12p40-/-) developed large, progressing lesions. Whereas resistant mice were able to mount a delayed-type hypersensitivity (DTH) response to Leishmania antigen, susceptible BALB/c mice as well as IL-12-deficient 129/Sv/Ev mice did not show any DTH reaction. To characterize the functional phenotype of CD4+ T cells triggered in infected wild-type mice and IL-12-deficient mice, the expression of mRNA for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) in purified CD4+ lymph node cells was analyzed. Wild-type 129/Sv/Ev mice showed high levels of mRNA for IFN-gamma and low levels of mRNA for IL-4 which is indicative of a Th1 response. In contrast, IL-12- deficient mice and susceptible BALB/c mice developed a strong Th2 response with high levels of IL-4 mRNA and low levels of IFN-gamma mRNA in CD4+ T cells. Similarly, lymph node cells from infected wild-type 129 mice produced predominantly IFN-gamma in response to stimulation with Leishmania antigen in vitro whereas lymph node cells from IL-12-deficient mice and susceptible BALB/c mice produced preferentially IL-4. Taken together, these results confirm in vivo the importance of IL-12 in induction of Th1 responses and protective immunity against L. major.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.