235 resultados para Dehydrogenation.
Regeneration behaviors of Fe/Si-2 and Fe-Mn/Si-2 catalysts for C2H6 dehydrogenation with CO2 to C2H4
Resumo:
The catalytic performance of Fe/Si-2 and Fe-Mn/Si-2 catalysts for conversion of C2H6 with CO2 to C2H4 was examined in a continuous-flow and fixed-bed reactor. The results show that the Fe-Mn/Si-2 catalyst exhibits much better reaction activity and selectivity to C2H4 than those of the Fe/Si-2 catalyst. Furthermore, the coking-decoking behaviors of these catalysts were studied through TG. The catalytic performances of the catalysts after regeneration for conversion of C2H6 or dilute C2H6 in FCC off-gas with CO2 to C2H4 were also examined. The results show that both activity and selectivity of the Fe-Mn/Si-2 catalyst after regeneration reached the same level as those of the fresh catalyst, whereas it is difficult for the Fe/Si-2 catalyst to refresh its reaction behavior after regeneration.
Resumo:
An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.
Resumo:
An oxygen permeable membrane based on Ba0.5Sr0.5Co0.8-Fe0.2O3-delta is used to supply lattice oxide continuously for oxidative dehydrogenation of ethane to ethylene with selectivity as high as 90% at 650degreesC.
Resumo:
The oxidative dehydrogenation (ODH) of propane was investigated on Ni-V-O catalysts in a wide range of vanadium contents (5-40%). The addition of a small amount of vanadium significantly increased the catalytic activity of NiO for oxidative dehydrogenation of propane to propene. The formation of propene has a good correlation with the coexistence of NiO and Ni3V2O8. This result strongly suggests that a synergetic effect exists between them in NiXV1-XOY (X = 0.95 to 0.6). The best results were obtained with a high Ni/V ratio (e.g. X = 0.95 to 0.85). The active sites and selective oxygen species are discussed. The influence of the catalyst preparation technique and the redox properties of the catalyst were also examined.