996 resultados para Defensive behavior
Resumo:
Natural history studies aim to know where the organisms live, what they do, and their relationships within the environment, including the other organisms. The anurans, among other vertebrates, exhibits the greatest variety of reproductive modes as well as a high complexity of social organization, that may enable a lot of naturalist studies. Anurans modes of organization are direct related to parental care, vocalization of chorus organization, and with males territoriality. In general, the social organization is influenced by species reproductive pattern. This study aim to get information about the natural history of Hypsiboas albopunctatus (perereca-cabrinha) a species of the family Hylidae, on the region of Rio Claro Municipality, São Paulo State, Brazil. The major aspects discussed were: seasonality, spatial distribution, acoustic and visual communication, reproductive mode, reproductive site, abiotic factors influences, territoriality, courtship behaviour, satellite male behavior, embrace and defensive behavior. To obtain this data, nocturnal field excursions were realized monthly. Two sites of Rio Claro county where chosen as studies sites, the sítio Cantaclaro (22o19’36’’S; 47o42’57’’O), on the District of Itapé and Floresta Estadual Edmundo Navarro de Andrade (FEENA) (22o24’58’’S; 47o31’26’’O).
Resumo:
Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. Neuropsychopharmacology (2012) 37, 412-421; doi:10.1038/npp.2011.188; published online 14 September 2011
Resumo:
The role of the amygdala in the mediation of fear and anxiety has been extensively investigated. However, how the amygdala functions during the organization of the anxiety-like behaviors generated in the elevated plus maze (EPM) is still under investigation. The basolateral (BLA) and the central (CeA) nuclei are the main input and output stations of the amygdala. In the present study, we ethopharmacologically analyzed the behavior of rats subjected to the EPM and the tissue content of the monoamines dopamine (DA) and serotonin (5-HT) and their metabolites in the nucleus accumbens (NAc), dorsal hippocampus (DH), and dorsal striatum (DS) of animals injected with saline or midazolam (20 and 30 nmol/0.2 mu L) into the BLA or CeA. Injections of midazolam into the CeA, but not BLA, caused clear anxiolytic-like effects in the EPM. These treatments did not cause significant changes in 5-HT or DA contents in the NAc, DH, or DS of animals tested in the EPM. The data suggest that the anxiolytic-like effects of midazolam in the EPM also appear to rely on GABA-benzodiazepine mechanisms in the CeA, but not BLA, and do not appear to depend on 5-HT and DA mechanisms prevalent in limbic structures.
Resumo:
Tonic immobility (TI) is an innate defensive behavior that can be elicited by physical restriction and postural inversion and is characterized by a profound and temporary state of akinesis. Our previous studies demonstrated that the stimulation of serotonin receptors in the dorsal raphe nucleus (DRN) appears to be biphasic during TI responses in guinea pigs (Cavia porcellus). Serotonin released by the DRN modulates behavioral responses and its release can occur through the action of different neurotransmitter systems, including the opioidergic and GABAergic systems. This study examines the role of opioidergic, GABAergic and serotonergic signaling in the DRN in TI defensive behavioral responses in guinea pigs. Microinjection of morphine (1.1 nmol) or bicuculline (0.5 nmol) into the DRN increased the duration of TI. The effect of morphine (1.1 nmol) was antagonized by pretreatment with naloxone (0.7 nmol), suggesting that the activation of pi opioid receptors in the DRN facilitates the TI response. By contrast, microinjection of muscimol (0.5 nmol) into the DRN decreased the duration of TI. However, a dose of muscimol (0.26 nmol) that alone did not affect TI, was sufficient to inhibit the effect of morphine (1.1 nmol) on TI, indicating that GABAergic and enkephalinergic neurons interact in the DRN. Microinjection of alpha-methyl-5-HT (1.6 nmol), a 5-HT2 agonist, into the DRN also increased TI. This effect was inhibited by the prior administration of naloxone (0.7 nmol). Microinjection of 8-OH-DPAT (1.3 nmol) also blocked the increase of TI promoted by morphine (1.1 nmol). Our results indicate that the opioidergic, GABAergic and serotonergic systems in the DRN are important for modulation of defensive behavioral responses of TI. Therefore, we suggest that opioid inhibition of GABAergic neurons results in disinhibition of serotonergic neurons and this is the mechanism by which opioids could enhance TI. Conversely, a decrease in TI could occur through the activation of GABAergic interneurons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
To identify reasons for ordering computed tomography pulmonary angiography (CTPA), to identify the frequency of reasons for CTPA reflecting defensive behavior and evidence-based behavior, and to identify the impact of defensive medicine and of training about diagnosing pulmonary embolism (PE) on positive results of CTPA.
Resumo:
Studies using neuronal tract-tracer in rat have shown that the anterior hypothalamic nucleus, dorsomedial division of the ventromedial nucleus of the hypothalamus and dorsal premammillary nucleus are highly connected. When the rat is exposed to predator or its odor these nuclei have shown a expression of Fos and their lesion reduces defensive behavior against predator. This set of nuclei was named the Hypothalamic Defense System. However, little is known about the response of this system to the odor of different predators or its role in mice. In this work, we exposed Swiss mice to two different predators odor (cat and snake) to verify the Fos expression in the Hypothalamic Defense System, as well as the defensive behaviors displayed. The analysis showed that the mice exposure to cat odor had an increased expression of Fos protein compared to control, while those exposed to snake odor showed no rise in Fos expression, which was corroborated by the behavioral data. Our results indicate that this distinct circuit in mice seems to act differentially to odorous stimuli of different predators, causing distinct behavioral responses of mice and that the odor of snake seems not to be perceived by Swiss mice as a threatening stimulus.
Resumo:
In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.
Resumo:
Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Rationale: A wealth of evidence supports the involvement of the serotonergic neurons of the median raphe nucleus (MRN) in anxiety. However, it is presently unclear whether serotonergic pathways arising from this nucleus play distinguishing regulatory roles in defensive behaviors that have been associated with specific subtypes of anxiety disorders. Objectives: To evaluate the role of the MRN serotonergic neurons in the regulation of two defensive behaviors, inhibitory avoidance and escape, which have been related, respectively, to generalized anxiety and panic disorders. Methods: Male Wistar rats were submitted to the elevated T-maze test of anxiety after intra-MRN administration of drugs that either non-selectively or selectively change the activity of the serotonergic neurons. Results: Intra-MRN injection of FG 7142 (0.04 and 0.08 nmol) and kainic acid (0.03 and 0.06 nmol), drugs that non-selectively stimulate the MRN serotonergic neurons, facilitated inhibitory avoidance acquisition, but impaired escape performance. Microinjection of muscimol (0.11 and 0.22 nmol), a compound that non-selectively inhibits the activity of the MRN serotonergic neurons, impaired inhibitory avoidance and facilitated escape performance. Both kainic acid and muscimol also changed rat locomotion in the open-field test. Intra-MRN injection of 8-OH-DPAT (0.6-15 nmol) and WAY-100635 (0.18-0.74 nmol), respectively an agonist and an antagonist of somatodendritic 5-HT1A receptors located on serotonergic neurons of the MRN, only affected inhibitory avoidance-while the former inhibited the acquisition of this behavior, the latter facilitated it. Conclusion: MRN serotonergic neurons seem to be selectively involved in the regulation of inhibitory avoidance in the elevated T-maze. This result supports the proposal that 5-HT pathways departing from this nucleus play an important role in anxiety processing, with implications for pathologies such as generalized anxiety disorder.
Resumo:
The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory-physical damage and extracts of chemical volatiles from leaf tissue-to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae). We also conducted a colony removal experiment to quantify the level of resistance from herbivores provided to plants by each ant species. Our experiments demonstrate that some cues eliciting a strong response from one ant species elicited no response by the other. For cues that do elicit responses, the magnitude of these responses can vary interspecifically. These patterns were consistent with the level of resistance provided from herbivores to plants. The colony removal experiment showed that both ant species defend plants from herbivores: however, herbivory was higher on plants colonized by the less aggressive ant species. Our results add to the growing body of literature indicating defensive ant responses are stimulated by cues associated with herbivory. However, they also suggest the local and regional variation in the composition of potential partner taxa could influence the ecology and evolution of defensive mutualisms in ways that have previously remained unexplored.
Resumo:
In 1956 African honeybee queens (Apis mellifera scutellata) were imported from South Africa and Tanzania to Brazil, as part of a government project to increase Brazilian honey production. The European honeybees existing in that country had not adapted well to the tropical conditions and consequently, had a low productivity. The newly introduced bee was known to produce substantially more honey than the other subspecies, but was also famous for its great aggressiveness and quicker attack of intruders with less disturbance. Hoping to create a new hybrid bee that would be both docile and productive, the scientist Warwick Estevam Kerr tried to cross the African and the European subspecies under controlled conditions. However, an accident resulted in the escape of 26 swarms into the Brazilian countryside, where their queens mated with drones of the European resident honeybees. The poly-hybrid bees resulting from these crossings expressed scutellata-like reproductive, foraging, and defensive behaviors and, for this reason, were called Africanized honeybees. They spread rapidly from the introduction area of the African honeybees (near Rio Claro, São Paulo state) to as far south as mid-Argentina and to the north of Texas, also settling in Arizona, New Mexico, California and Nevada, due to their high adaptability to variable ecological conditions. In spite of a few undesirable behaviors, these bees have been invoking larger economic interest because they produce much more honey, have good resistance to diseases and are excellent pollinators. In Brazil, because people frequently disturb the environment, the occupation of urban refuges by Africanized honeybees has been increasing in the last years. The concern with accidents is generally associated with the high swarming frequency recorded during the year and the variety of shelters available in urban areas. This paper deals with the biological characteristics of the Africanized honeybees, their nesting behavior in urban environments, and accidents caused by these bees in Brazilian cities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The gall-forming thrips Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae) is recorded in all regions where its host plant, Ficus microcarpa (Marchal) (Moraceae), has been cultivated as an urban and interior landscape plant species, including potted plants and bonsai. Similarly, the thrips predator Montandoniola confusa Streito & Matocq (Hemiptera: Anthocoridae) has generally followed the prey distribution. The gall induced by thrips degrades the plant foliage, and the thrips themselves can be annoying for people both outdoors and indoors. The galls, however, create a microcosm with all developmental stages of the thrips and its predator. In this study we present the first records of M. confusa in South America, document the species' widespread concomitant occurrence across Brazil, and report our studies of three aspects of M. confusa predation upon the eggs, larvae/prepupae, and adults of G. ficorum thrips: (i) functional response of the predator adult female as a function of different densities of thrips eggs, larvae/prepupae and adults separately: (ii) predation on eggs by adult M. confusa with adult thrips present in the gall; and (iii) adult M. confusa prey preferences when all thrips stages occurred simultaneously in the gall. For all three thrips life stages tested, the predator exhibited a type II functional response. Despite the availability of different life stages in the gall, M. confusa adults are capable of preying upon all life stages of G. ficorum, predation was preferentially on thrips eggs, with an estimated similar to 10-fold greater predation on eggs compared to larvae/prepupae and adult thrips. Egg predation was unaffected by the presence of defensive adult thrips in the gall under low densities (<30 eggs/gall) but when egg densities were greater than 30 eggs/gall, it was reduced when adult thrips were present. However, the relative number of thrips adults per gall did not statistically change the outcome. (C) 2013 Elsevier Inc. All rights reserved.