970 resultados para Deep-sea sounding
Resumo:
Ten species belonging to three genera of the subfamily Pontoniinae were colleted by the deep-sea expedition "PANGLAO 2005" in the Philippines, including four new species of the genus Periclimenes, i.e., P. boucheti n. sp., P. leptunguis n. sp., P. ngi n. sp., and P. panglaonis sp. nov., and one newly recorded species from the Philippines, Periclimenes laccadivensis. They are reported with color photographs except one species, Plesiopontonia monodi. The possible synonymy of Periclimenes foresti and P. granuloides is discussed.
Resumo:
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.
Resumo:
Until recently the deep sea was considered to be a particularly stable environment1, free from seasonal variations. However, atmospheric storms may cause periodicity in deep-ocean currents2 and nepheloid layers3 while seasonality in the particulate flux to the deep sea is known to occur in the Sargasso Sea4,5 and Panama Basin6. Evidence is presented here of a similar seasonal pulse of detrital material to bathyal and abyssal depths in temperate latitudes; this material seems to be derived directly from the surface primary production and to sink rapidly to the deep-sea benthos. Considerable sedimentation occurs soon after the spring bloom and continues throughout the early summer. This process acts as a pathway for the descent of carbon from the euphotic zone, providing a periodic food source for the deep pelagic and benthic communities.
Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic