853 resultados para Data stream mining


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis reports on an investigation of the feasibility and usefulness of incorporating dynamic management facilities for managing sensed context data in a distributed contextaware mobile application. The investigation focuses on reducing the work required to integrate new sensed context streams in an existing context aware architecture. Current architectures require integration work for new streams and new contexts that are encountered. This means of operation is acceptable for current fixed architectures. However, as systems become more mobile the number of discoverable streams increases. Without the ability to discover and use these new streams the functionality of any given device will be limited to the streams that it knows how to decode. The integration of new streams requires that the sensed context data be understood by the current application. If the new source provides data of a type that an application currently requires then the new source should be connected to the application without any prior knowledge of the new source. If the type is similar and can be converted then this stream too should be appropriated by the application. Such applications are based on portable devices (phones, PDAs) for semi-autonomous services that use data from sensors connected to the devices, plus data exchanged with other such devices and remote servers. Such applications must handle input from a variety of sensors, refining the data locally and managing its communication from the device in volatile and unpredictable network conditions. The choice to focus on locally connected sensory input allows for the introduction of privacy and access controls. This local control can determine how the information is communicated to others. This investigation focuses on the evaluation of three approaches to sensor data management. The first system is characterised by its static management based on the pre-pended metadata. This was the reference system. Developed for a mobile system, the data was processed based on the attached metadata. The code that performed the processing was static. The second system was developed to move away from the static processing and introduce a greater freedom of handling for the data stream, this resulted in a heavy weight approach. The approach focused on pushing the processing of the data into a number of networked nodes rather than the monolithic design of the previous system. By creating a separate communication channel for the metadata it is possible to be more flexible with the amount and type of data transmitted. The final system pulled the benefits of the other systems together. By providing a small management class that would load a separate handler based on the incoming data, Dynamism was maximised whilst maintaining ease of code understanding. The three systems were then compared to highlight their ability to dynamically manage new sensed context. The evaluation took two approaches, the first is a quantitative analysis of the code to understand the complexity of the relative three systems. This was done by evaluating what changes to the system were involved for the new context. The second approach takes a qualitative view of the work required by the software engineer to reconfigure the systems to provide support for a new data stream. The evaluation highlights the various scenarios in which the three systems are most suited. There is always a trade-o↵ in the development of a system. The three approaches highlight this fact. The creation of a statically bound system can be quick to develop but may need to be completely re-written if the requirements move too far. Alternatively a highly dynamic system may be able to cope with new requirements but the developer time to create such a system may be greater than the creation of several simpler systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mine simulation depends on data that is both coherent and representative of the mining operation. This paper describes a methodology for modeling operational data which has been developed for mine simulation. The methodology has been applied to a case study of an open-pit mine, where the cycle times of the truck fleet have been modeled for mine simulation purposes. The results obtained have shown that once the operational data has been treated using the proposed methodology, the system variables have proven to be adherent to theoretical distributions. The research indicated the need jar tracking the origin of data inconsistencies through the development of a process to manage inconsistent data from the mining operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Velocity and absorption tomograms are the two most common forms of presentation of radar tomographic data. However, mining personnel, geophysicists included, are often unfamiliar with radar velocity and absorption. In this paper, general formulae are introduced, relating velocity and attenuation coefficient to conductivity and dielectric constant. The formulae are valid for lossy media as well as high-resistivity materials. The transformation of velocity and absorption to conductivity and dielectric constant is illustrated via application of the formulae to radar tomograms from the Hellyer zinc-lead-silver mine, Tasmania, Australia. The resulting conductivity and dielectric constant tomograms constructed at Hellyer demonstrated the potential of radar tomography to delineate sulphide ore zones. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A l’actualitat trobem nombrosos sistemes aquàtics alterats per diferents efectes d’origen antropogènic. Per tal d’evitar i/o disminuir aquests efectes va sorgir la Directiva Marc de l’Aigua (2000/60/CE) essent aquest un dels seus objectius. Aquest article descriu el funcionament hidrogeològic i l’estat ecològic de la riera de Santa Coloma, afluent de la Tordera (NE Catalunya), des de pràcticament el seu inici a Santa Coloma de Farners (Girona) fins a Riudarenes (Girona). S’intenta establir les possibles influències del funcionament hidrogeològic en l’estat ecològic a partir de dades piezomètriques, de cabal, fisicoquímiques i biològiques. Per aquesta última part s’han utilitzat indicadors biològics com l’índex d’hàbitat fluvial (IHF), avaluant l’hàbitat físic; l’índex de Qualitat del Bosc de Ribera (QBR), per determinar la qualitat ecològica de la zona de ribera; l’índex Biological Monitorig Working Party per a conques internes de Catalunya (BMWPC), per avaluar les diferents famílies de macroinvertebrats que hi viuen i l’índex ECOSTRIMED, una síntesi dels dos índex anteriors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Internet of Things är ett samlingsbegrepp för den utveckling som innebär att olika typer av enheter kan förses med sensorer och datachip som är uppkopplade mot internet. En ökad mängd data innebär en ökad förfrågan på lösningar som kan lagra, spåra, analysera och bearbeta data. Ett sätt att möta denna förfrågan är att använda sig av molnbaserade realtidsanalystjänster. Multi-tenant och single-tenant är två typer av arkitekturer för molnbaserade realtidsanalystjänster som kan användas för att lösa problemen med hanteringen av de ökade datamängderna. Dessa arkitekturer skiljer sig åt när det gäller komplexitet i utvecklingen. I detta arbete representerar Azure Stream Analytics en multi-tenant arkitektur och HDInsight/Storm representerar en single-tenant arkitektur. För att kunna göra en jämförelse av molnbaserade realtidsanalystjänster med olika arkitekturer, har vi valt att använda oss av användbarhetskriterierna: effektivitet, ändamålsenlighet och användarnöjdhet. Vi kom fram till att vi ville ha svar på följande frågor relaterade till ovannämnda tre användbarhetskriterier: • Vilka likheter och skillnader kan vi se i utvecklingstider? • Kan vi identifiera skillnader i funktionalitet? • Hur upplever utvecklare de olika analystjänsterna? Vi har använt en design and creation strategi för att utveckla två Proof of Concept prototyper och samlat in data genom att använda flera datainsamlingsmetoder. Proof of Concept prototyperna inkluderade två artefakter, en för Azure Stream Analytics och en för HDInsight/Storm. Vi utvärderade dessa genom att utföra fem olika scenarier som var för sig hade 2-5 delmål. Vi simulerade strömmande data genom att låta en applikation kontinuerligt slumpa fram data som vi analyserade med hjälp av de två realtidsanalystjänsterna. Vi har använt oss av observationer för att dokumentera hur vi arbetade med utvecklingen av analystjänsterna samt för att mäta utvecklingstider och identifiera skillnader i funktionalitet. Vi har även använt oss av frågeformulär för att ta reda på vad användare tyckte om analystjänsterna. Vi kom fram till att Azure Stream Analytics initialt var mer användbart än HDInsight/Storm men att skillnaderna minskade efter hand. Azure Stream Analytics var lättare att arbeta med vid simplare analyser medan HDInsight/Storm hade ett bredare val av funktionalitet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of middleware technology in various types of systems, in order to abstract low-level details related to the distribution of application logic, is increasingly common. Among several systems that can be benefited from using these components, we highlight the distributed systems, where it is necessary to allow communications between software components located on different physical machines. An important issue related to the communication between distributed components is the provision of mechanisms for managing the quality of service. This work presents a metamodel for modeling middlewares based on components in order to provide to an application the abstraction of a communication between components involved in a data stream, regardless their location. Another feature of the metamodel is the possibility of self-adaptation related to the communication mechanism, either by updating the values of its configuration parameters, or by its replacement by another mechanism, in case of the restrictions of quality of service specified are not being guaranteed. In this respect, it is planned the monitoring of the communication state (application of techniques like feedback control loop), analyzing performance metrics related. The paradigm of Model Driven Development was used to generate the implementation of a middleware that will serve as proof of concept of the metamodel, and the configuration and reconfiguration policies related to the dynamic adaptation processes. In this sense was defined the metamodel associated to the process of a communication configuration. The MDD application also corresponds to the definition of the following transformations: the architectural model of the middleware in Java code, and the configuration model to XML

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of recurring concepts in data stream classification is a special case of concept drift where concepts may reappear. Although several existing methods are able to learn in the presence of concept drift, few consider contextual information when tracking recurring concepts. Nevertheless, in many real-world scenarios context information is available and can be exploited to improve existing approaches in the detection or even anticipation of recurring concepts. In this work, we propose the extension of existing approaches to deal with the problem of recurring concepts by reusing previously learned decision models in situations where concepts reappear. The different underlying concepts are identified using an existing drift detection method, based on the error-rate of the learning process. A method to associate context information and learned decision models is proposed to improve the adaptation to recurring concepts. The method also addresses the challenge of retrieving the most appropriate concept for a particular context. Finally, to deal with situations of memory scarcity, an intelligent strategy to discard models is proposed. The experiments conducted so far, using synthetic and real datasets, show promising results and make it possible to analyze the trade-off between the accuracy gains and the learned models storage cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many data streaming applications produces massive amounts of data that must be processed in a distributed fashion due to the resource limitation of a single machine. We propose a distributed data stream clustering protocol. Theoretical analysis shows preliminary results about the quality of discovered clustering. In addition, we present results about the ability to reduce the time complexity respect to the centralized approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Online multimedia data needs to be encrypted for access control. To be capable of working on mobile devices such as pocket PC and mobile phones, lightweight video encryption algorithms should be proposed. The two major problems in these algorithms are that they are either not fast enough or unable to work on highly compressed data stream. In this paper, we proposed a new lightweight encryption algorithm based on Huffman error diffusion. It is a selective algorithm working on compressed data. By carefully choosing the most significant parts (MSP), high performance is achieved with proper security. Experimental results has proved the algorithm to be fast. secure: and compression-compatible.