958 resultados para Data mining and knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical Dirichlet processes (HDP) was originally designed and experimented for a single data channel. In this paper we enhanced its ability to model heterogeneous data using a richer structure for the base measure being a product-space. The enhanced model, called Product Space HDP (PS-HDP), can (1) simultaneously model heterogeneous data from multiple sources in a Bayesian nonparametric framework and (2) discover multilevel latent structures from data to result in different types of topics/latent structures that can be explained jointly. We experimented with the MDC dataset, a large and real-world data collected from mobile phones. Our goal was to discover identity–location– time (a.k.a who-where-when) patterns at different levels (globally for all groups and locally for each group). We provided analysis on the activities and patterns learned from our model, visualized, compared and contrasted with the ground-truth to demonstrate the merit of the proposed framework. We further quantitatively evaluated and reported its performance using standard metrics including F1-score, NMI, RI, and purity. We also compared the performance of the PS-HDP model with those of popular existing clustering methods (including K-Means, NNMF, GMM, DP-Means, and AP). Lastly, we demonstrate the ability of the model in learning activities with missing data, a common problem encountered in pervasive and ubiquitous computing applications.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequent episode discovery is a popular framework for temporal pattern discovery in event streams. An episode is a partially ordered set of nodes with each node associated with an event type. Currently algorithms exist for episode discovery only when the associated partial order is total order (serial episode) or trivial (parallel episode). In this paper, we propose efficient algorithms for discovering frequent episodes with unrestricted partial orders when the associated event-types are unique. These algorithms can be easily specialized to discover only serial or parallel episodes. Also, the algorithms are flexible enough to be specialized for mining in the space of certain interesting subclasses of partial orders. We point out that frequency alone is not a sufficient measure of interestingness in the context of partial order mining. We propose a new interestingness measure for episodes with unrestricted partial orders which, when used along with frequency, results in an efficient scheme of data mining. Simulations are presented to demonstrate the effectiveness of our algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid emergence of infectious diseases calls for immediate attention to determine practical solutions for intervention strategies. To this end, it becomes necessary to obtain a holistic view of the complex hostpathogen interactome. Advances in omics and related technology have resulted in massive generation of data for the interacting systems at unprecedented levels of detail. Systems-level studies with the aid of mathematical tools contribute to a deeper understanding of biological systems, where intuitive reasoning alone does not suffice. In this review, we discuss different aspects of hostpathogen interactions (HPIs) and the available data resources and tools used to study them. We discuss in detail models of HPIs at various levels of abstraction, along with their applications and limitations. We also enlist a few case studies, which incorporate different modeling approaches, providing significant insights into disease. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid emergence of infectious diseases calls for immediate attention to determine practical solutions for intervention strategies. To this end, it becomes necessary to obtain a holistic view of the complex hostpathogen interactome. Advances in omics and related technology have resulted in massive generation of data for the interacting systems at unprecedented levels of detail. Systems-level studies with the aid of mathematical tools contribute to a deeper understanding of biological systems, where intuitive reasoning alone does not suffice. In this review, we discuss different aspects of hostpathogen interactions (HPIs) and the available data resources and tools used to study them. We discuss in detail models of HPIs at various levels of abstraction, along with their applications and limitations. We also enlist a few case studies, which incorporate different modeling approaches, providing significant insights into disease. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal representation and reasoning plays an important role in Data Mining and Knowledge Discovery, particularly, in mining and recognizing patterns with rich temporal information. Based on a formal characterization of time-series and state-sequences, this paper presents the computational technique and algorithm for matching state-based temporal patterns. As a case study of real-life applications, zone-defense pattern recognition in basketball games is specially examined as an illustrating example. Experimental results demonstrate that it provides a formal and comprehensive temporal ontology for research and applications in video events detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the causal relation among attributes in a domain is a key task in data mining and knowledge discovery. The Minimum Message Length (MML) principle has demonstrated its ability in discovering linear causal models from training data. To explore the ways to improve efficiency, this paper proposes a novel Markov Blanket identification algorithm based on the Lasso estimator. For each variable, this algorithm first generates a Lasso tree, which represents a pruned candidate set of possible feature sets. The Minimum Message Length principle is then employed to evaluate all those candidate feature sets, and the feature set with minimum message length is chosen as the Markov Blanket. Our experiment results show the ability of this algorithm. In addition, this algorithm can be used to prune the search space of causal discovery, and further reduce the computational cost of those score-based causal discovery algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the causal structure of a domain is frequently a key task in the area of Data Mining and Knowledge Discovery. This paper introduces ensemble learning into linear causal model discovery, then examines several algorithms based on different ensemble strategies including Bagging, Adaboost and GASEN. Experimental results show that (1) Ensemble discovery algorithm can achieve an improved result compared with individual causal discovery algorithm in terms of accuracy; (2) Among all examined ensemble discovery algorithms, BWV algorithm which uses a simple Bagging strategy works excellently compared to other more sophisticated ensemble strategies; (3) Ensemble method can also improve the stability of parameter estimation. In addition, Ensemble discovery algorithm is amenable to parallel and distributed processing, which is important for data mining in large data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of biological databases not only provides biologists with abundant data but also presents a big challenge in relation to the analysis of data. Many data analysis approaches such as data mining, information retrieval and machine learning have been used to extract frequent patterns from diverse biological databases. However, the discrepancies, due to the differences in the structure of databases and their terminologies, result in a significant lack of interoperability. Although ontology-based approaches have been used to integrate biological databases, the inconsistent analysis of biological databases has been greatly disregarded. This paper presents a method by which to measure the degree of inconsistency between biological databases. It not only presents a guideline for correct and efficient database integration, but also exposes high quality data for data mining and knowledge discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent visualization techniques aimed at supporting tasks that require the analysis of text documents, from approaches targeted at visually summarizing the relevant content of a single document to those aimed at assisting exploratory investigation of whole collections of documents.Techniques are organized considering their target input materialeither single texts or collections of textsand their focus, which may be at displaying content, emphasizing relevant relationships, highlighting the temporal evolution of a document or collection, or helping users to handle results from a query posed to a search engine.We describe the approaches adopted by distinct techniques and briefly review the strategies they employ to obtain meaningful text models, discuss how they extract the information required to produce representative visualizations, the tasks they intend to support and the interaction issues involved, and strengths and limitations. Finally, we show a summary of techniques, highlighting their goals and distinguishing characteristics. We also briefly discuss some open problems and research directions in the fields of visual text mining and text analytics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquity of time series data across almost all human endeavors has produced a great interest in time series data mining in the last decade. While dozens of classification algorithms have been applied to time series, recent empirical evidence strongly suggests that simple nearest neighbor classification is exceptionally difficult to beat. The choice of distance measure used by the nearest neighbor algorithm is important, and depends on the invariances required by the domain. For example, motion capture data typically requires invariance to warping, and cardiology data requires invariance to the baseline (the mean value). Similarly, recent work suggests that for time series clustering, the choice of clustering algorithm is much less important than the choice of distance measure used.In this work we make a somewhat surprising claim. There is an invariance that the community seems to have missed, complexity invariance. Intuitively, the problem is that in many domains the different classes may have different complexities, and pairs of complex objects, even those which subjectively may seem very similar to the human eye, tend to be further apart under current distance measures than pairs of simple objects. This fact introduces errors in nearest neighbor classification, where some complex objects may be incorrectly assigned to a simpler class. Similarly, for clustering this effect can introduce errors by “suggesting” to the clustering algorithm that subjectively similar, but complex objects belong in a sparser and larger diameter cluster than is truly warranted.We introduce the first complexity-invariant distance measure for time series, and show that it generally produces significant improvements in classification and clustering accuracy. We further show that this improvement does not compromise efficiency, since we can lower bound the measure and use a modification of triangular inequality, thus making use of most existing indexing and data mining algorithms. We evaluate our ideas with the largest and most comprehensive set of time series mining experiments ever attempted in a single work, and show that complexity-invariant distance measures can produce improvements in classification and clustering in the vast majority of cases.