925 resultados para Data clustering. Fuzzy C-Means. Cluster centers initialization. Validation indices
Resumo:
Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.
Resumo:
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Resumo:
Lo scopo del clustering è quindi quello di individuare strutture nei dati significative, ed è proprio dalla seguente definizione che è iniziata questa attività di tesi , fornendo un approccio innovativo ed inesplorato al cluster, ovvero non ricercando la relazione ma ragionando su cosa non lo sia. Osservando un insieme di dati ,cosa rappresenta la non relazione? Una domanda difficile da porsi , che ha intrinsecamente la sua risposta, ovvero l’indipendenza di ogni singolo dato da tutti gli altri. La ricerca quindi dell’indipendenza tra i dati ha portato il nostro pensiero all’approccio statistico ai dati , in quanto essa è ben descritta e dimostrata in statistica. Ogni punto in un dataset, per essere considerato “privo di collegamenti/relazioni” , significa che la stessa probabilità di essere presente in ogni elemento spaziale dell’intero dataset. Matematicamente parlando , ogni punto P in uno spazio S ha la stessa probabilità di cadere in una regione R ; il che vuol dire che tale punto può CASUALMENTE essere all’interno di una qualsiasi regione del dataset. Da questa assunzione inizia il lavoro di tesi, diviso in più parti. Il secondo capitolo analizza lo stato dell’arte del clustering, raffrontato alla crescente problematica della mole di dati, che con l’avvento della diffusione della rete ha visto incrementare esponenzialmente la grandezza delle basi di conoscenza sia in termini di attributi (dimensioni) che in termini di quantità di dati (Big Data). Il terzo capitolo richiama i concetti teorico-statistici utilizzati dagli algoritimi statistici implementati. Nel quarto capitolo vi sono i dettagli relativi all’implementazione degli algoritmi , ove sono descritte le varie fasi di investigazione ,le motivazioni sulle scelte architetturali e le considerazioni che hanno portato all’esclusione di una delle 3 versioni implementate. Nel quinto capitolo gli algoritmi 2 e 3 sono confrontati con alcuni algoritmi presenti in letteratura, per dimostrare le potenzialità e le problematiche dell’algoritmo sviluppato , tali test sono a livello qualitativo , in quanto l’obbiettivo del lavoro di tesi è dimostrare come un approccio statistico può rivelarsi un’arma vincente e non quello di fornire un nuovo algoritmo utilizzabile nelle varie problematiche di clustering. Nel sesto capitolo saranno tratte le conclusioni sul lavoro svolto e saranno elencati i possibili interventi futuri dai quali la ricerca appena iniziata del clustering statistico potrebbe crescere.
Resumo:
Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn
Resumo:
Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.
Resumo:
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Resumo:
In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.
Resumo:
Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.