956 resultados para Data Structure Evaluation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In professional video production, users have to access to huge multimedia files simultaneously in an error-free environment, this restriction force the use of expensive disk architectures for video servers. Previous researches proposed different RAID systems for each specific task (ingest, editing, file, play-out, etc.). Video production companies have to acquire different servers with different RAIDs systems in order to support each task in the production workflow. The solution has multiples disadvantages, duplicated material in several RAIDs, duplicated material for different qualities, transfer and transcoding processes, etc. In this work, an architecture for video servers based on the spreading of JPEG200 data in different RAIDs is presented, each individual part of the data structure goes to a specific RAID type depending on the effect that produces the data on the overall image quality, the method provide a redundancy correlated with the data rank. The global storage can be used in all the different tasks of the production workflow saving disk space, redundant files and transfers procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The schema of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. Obtaining quickly the appropriate data increases the likelihood that an organization will make good decisions and respond adeptly to challenges. This research presents and validates a methodology for evaluating, ex ante, the relative desirability of alternative instantiations of a model of data. In contrast to prior research, each instantiation is based on a different formal theory. This research theorizes that the instantiation that yields the lowest weighted average query complexity for a representative sample of information requests is the most desirable instantiation for end-user queries. The theory was validated by an experiment that compared end-user performance using an instantiation of a data structure based on the relational model of data with performance using the corresponding instantiation of the data structure based on the object-relational model of data. Complexity was measured using three different Halstead metrics: program length, difficulty, and effort. For a representative sample of queries, the average complexity using each instantiation was calculated. As theorized, end users querying the instantiation with the lower average complexity made fewer semantic errors, i.e., were more effective at composing queries. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years many real time applications need to handle data streams. We consider the distributed environments in which remote data sources keep on collecting data from real world or from other data sources, and continuously push the data to a central stream processor. In these kinds of environments, significant communication is induced by the transmitting of rapid, high-volume and time-varying data streams. At the same time, the computing overhead at the central processor is also incurred. In this paper, we develop a novel filter approach, called DTFilter approach, for evaluating the windowed distinct queries in such a distributed system. DTFilter approach is based on the searching algorithm using a data structure of two height-balanced trees, and it avoids transmitting duplicate items in data streams, thus lots of network resources are saved. In addition, theoretical analysis of the time spent in performing the search, and of the amount of memory needed is provided. Extensive experiments also show that DTFilter approach owns high performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method and a corresponding tool is described which assist design recovery and program understanding by recognising instances of design patterns semi-automatically. The approach taken is specifically designed to overcome the existing scalability problems caused by many design and implementation variants of design pattern instances. Our approach is based on a new recognition algorithm which works incrementally rather than trying to analyse a possibly large software system in one pass without any human intervention. The new algorithm exploits domain and context knowledge given by a reverse engineer and by a special underlying data structure, namely a special form of an annotated abstract syntax graph. A comparative and quantitative evaluation of applying the approach to the Java AWT and JGL libraries is also given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design and implementation of data bases involve, firstly, the formulation of a conceptual data model by systematic analysis of the structure and information requirements of the organisation for which the system is being designed; secondly, the logical mapping of this conceptual model onto the data structure of the target data base management system (DBMS); and thirdly, the physical mapping of this structured model into storage structures of the target DBMS. The accuracy of both the logical and physical mapping determine the performance of the resulting systems. This thesis describes research which develops software tools to facilitate the implementation of data bases. A conceptual model describing the information structure of a hospital is derived using the Entity-Relationship (E-R) approach and this model forms the basis for mapping onto the logical model. Rules are derived for automatically mapping the conceptual model onto relational and CODASYL types of data structures. Further algorithms are developed for partly automating the implementation of these models onto INGRES, MIMER and VAX-11 DBMS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indicators which summarise the characteristics of spatiotemporal data coverages significantly simplify quality evaluation, decision making and justification processes by providing a number of quality cues that are easy to manage and avoiding information overflow. Criteria which are commonly prioritised in evaluating spatial data quality and assessing a dataset’s fitness for use include lineage, completeness, logical consistency, positional accuracy, temporal and attribute accuracy. However, user requirements may go far beyond these broadlyaccepted spatial quality metrics, to incorporate specific and complex factors which are less easily measured. This paper discusses the results of a study of high level user requirements in geospatial data selection and data quality evaluation. It reports on the geospatial data quality indicators which were identified as user priorities, and which can potentially be standardised to enable intercomparison of datasets against user requirements. We briefly describe the implications for tools and standards to support the communication and intercomparison of data quality, and the ways in which these can contribute to the generation of a GEO label.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systematic, high-quality observations of the atmosphere, oceans and terrestrial environments are required to improve understanding of climate characteristics and the consequences of climate change. The overall aim of this report is to carry out a comparative assessment of approaches taken to addressing the state of European observations systems and related data analysis by some leading actors in the field. This research reports on approaches to climate observations and analyses in Ireland, Switzerland, Germany, The Netherlands and Austria and explores options for a more coordinated approach to national responses to climate observations in Europe. The key aspects addressed are: an assessment of approaches to develop GCOS and provision of analysis of GCOS data; an evaluation of how these countries are reporting development of GCOS; highlighting best practice in advancing GCOS implementation including analysis of Essential Climate Variables (ECVs); a comparative summary of the differences and synergies in terms of the reporting of climate observations; an overview of relevant European initiatives and recommendations on how identified gaps might be addressed in the short to medium term.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.