246 resultados para Daphnia
Resumo:
Aquatic ecosystems are suffering many impacts caused by human activities resulting from the activities occurring around them. With technological progress observed in recent years, this environment has received large amounts of chemicals from industries, agriculture and urban area that affect the aquatic biota. Among these sources of contamination, the oil industry has contributed to the pollution of aquatic environments with both effluents as produced water well as oil spills and their derivatives having toxicity to various organisms. With all the environmental issues has increased concern about water quality and has been used ecotoxicological tests with aquatic organisms to ecosystems to assess the toxicity of chemicals present in the water. In this context the microcrustacea Daphnia similis stands out as a freshwater organism very representative of the aquatic fauna of rivers and high sensitivity to environmental impacts. Thus, the present study aimed to evaluate the lethal toxicity of crude oil and produced water on this microcrustacea. The results showed that the microcrustacea presented high sensitivity to contaminants primarily crude oil. There was also the influence of environmental variables pH and temperature on the survival of organisms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study aimed to evaluate the interactions of the pesticide Vertimec (R) 18EC in aquatic ecosystems. In this respect, soil plots were contaminated with Vertimec (R) 18EC at the concentration indicated for strawberry crops (0.125 L of solution m(-2)). After the contamination, torrential rainfall was simulated and the surface runoff was collected and transferred to mesocosm tanks in five treatments, run in triplicate: (1) control-C; (2) runoff from an uncontaminated plot-UR; (3) runoff from the plot contaminated with Vertimec (R) 18EC-CR; (4) direct application of Vertimec (R) 18EC in the water-V and (5) water samples gathered randomly to verify whether there was contamination between the mesocosms-RS. Water samples from these tanks were also submitted to ecotoxicological tests with Daphnia similis and analyses to evaluate the limnological characteristics, in five collection periods over 10 days (240 h). Physical and chemical differences were observed in the water samples, mainly related to increased turbidity, suspended solids and nutrients (nitrogen and phosphate forms). Acute toxicity was observed for the direct application treatment for the entire experimental period, and in some periods for the CR treatment (from 48 h to 168 h). The results obtained suggest that the pesticide did not fully degrade during the study period (10 days) in the direct application treatment, demonstrating that the presence of other substances in the commercial formulation contribute to the maintenance of toxicity. This represents a potential risk for aquatic ecosystems in areas adjacent to where the chemical is applied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L-1, LC50 96 h for Chironomus xanthus of 2.67 mu g L-1 and LC50 48 h for Danio rerio of 33 mu g L-1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
[ES] Determinación del crecimiento del cladócero de agua dulce Daphnia sp. del copépodo Acartia clausi -a varias concentraciones de alimento y temperatura- en términos de talla corporal, empleando para ello la técnica de fotografía de siluetas.
Resumo:
Máster en Oceanografía
Resumo:
I farmaci sono una nuova classe di inquinanti ambientali ubiquitari che raggiungono, insieme alle acque fognarie, i depuratori urbani che non sono in grado di rimuoverli o degradarli. Così le acque depurate, ancora ricche di farmaci, si riversano nei canali riceventi portando questo carico di inquinanti fino ai fiumi e ai laghi. L’obiettivo del presente studio è stato fornire un contributo alla valutazione del rischio ecologico associato al rilascio di miscele di farmaci nell’ambiente acquatico, verificando con esperimenti di laboratorio gli effetti dell’esposizione congiunta a propranololo e fluoxetina sulla riproduzione di Daphnia magna, crostaceo planctonico d’acqua dolce. Il propranololo è un farmaco beta-bloccante, ossia blocca l'azione dell'adrenalina sui recettori adrenergici di tipo beta del cuore e viene utilizzato contro l’ipertensione. La fluoxetina è un antidepressivo, inibitore selettivo della ricaptazione della serotonina. Sono stati eseguiti test cronici (21 giorni) con solo propranololo (0,25 - 2,00 mg/L) e con solo fluoxetina (0,03 - 0,80 mg/L) che hanno stimato un EC50 per la riproduzione di 0,739 mg/L e di 0,238 mg/L, rispettivamente. L’ultima fase sperimentale consisteva in un test cronico con 25 miscele contenti percentuali diverse dei due farmaci (0%; 25%; 50%; 75%; 100%) e con diverse concentrazioni totali (0,50; 0,71; 1,00; 1,41; 2,00 unità tossiche). Le unità tossiche sono state calcolate sulla base degli EC50 dei precedenti test cronici con i singoli farmaci. I dati sperimentali del test sono stati analizzati utilizzando MixTox, un metodo statistico per la previsione degli effetti congiunti di miscele di sostanze tossiche, che ha permesso di stabilire quale fosse il modello in grado di rappresentare al meglio i risultati sperimentali. Il modello di riferimento utilizzato è stato la concentration addition (CA) a partire dal quale si è identificato il modello che meglio rappresenta l’interazione tra i due farmaci: antagonism (S/A) dose ratio dependent (DR). Infatti si evidenzia antagonismo per tutte le miscele dei due farmaci, ma più accentuato in presenza di una maggiore percentuale di propranololo. Contrariamente a quanto verificato in studi su altre specie e su effetti biologici diversi, è comunque stato possibile evidenziare un affetto avverso sulla riproduzione di D. magna solo a concentrazioni di propranololo e fluoxetina molto più elevate di quelle osservate nelle acque superficiali.
Resumo:
Widespread occurrence of pharmaceuticals residues has been reported in aquatic ecosystems. However, their toxic effects on aquatic biota remain unclear. Generally, the acute toxicity has been assessed in laboratory experiments, while chronic toxicity studies have rarely been performed. Of importance appears also the assessment of mixture effects, since pharmaceuticals never occur in waters alone. The aim of the present work is to evaluate acute and chronic toxic response in the crustacean Daphnia magna exposed to single pharmaceuticals and mixtures. We tested fluoxetine, a SSRI widely prescribed as antidepressant, and propranolol, a non selective β-adrenergic receptor-blocking agent used to treat hypertension. Acute immobilization and chronic reproduction tests were performed according to OECD guidelines 202 and 211, respectively. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design with concentrations based on Toxic Units. The conceptual model of Concentration Addition was adopted in this study, as we assumed that the mixture effect mirrors the sum of the single substances for compounds having similar mode of action. The MixTox statistical method was applied to analyze the experimental results. Results showed a significant deviation from CA model that indicated antagonism between chemicals in both the acute and the chronic mixture tests. The study was integrated assessing the effects of fluoxetine on a battery of biomarkers. We wanted to evaluate the organism biological vulnerability caused by low concentrations of pharmaceutical occurring in the aquatic environment. We assessed the acetylcholinesterase and glutathione s-transferase enzymatic activities and the malondialdehyde production. No treatment induced significant alteration of biomarkers with respect to the control. Biological assays and the MixTox model application proved to be useful tools for pharmaceutical risk assessment. Although promising, the application of biomarkers in Daphnia magna needs further elucidation.
Resumo:
Daphnia can ingest methane-oxidizing bacteria and incorporate methanogenic carbon into their biomass, leading to low stable carbon isotope ratios (expressed as δ13C values) of their tissue. Therefore, δ13C analysis of Daphnia resting eggs (ephippia) in lake sediment records can potentially be used to reconstruct past in-lake availability of methane (CH4). However, detailed multilake studies demonstrating that δ13C values of recently deposited Daphnia ephippia (δ13Cephippia) are systematically related to in-lake CH4 concentrations (CH4aq) are still missing. We measured δ13Cephippia from surface sediments of 15 small lakes in Europe, and compared these values with late-summer CH4aq. δ13Cephippia ranged from −51.6‰ to −25.9‰, and was strongly correlated with CH4aq in the surface water and above the sediment (r −0.73 and −0.77, respectively), whereas a negative rather than the expected positive correlation was found with δ13C values of carbon dioxide (CO2) (r −0.54), and no correlation was observed with CO2aq. At eight sites, offsets between δ13 CCO2 and δ13Cephippia exceeded offsets between δ13 CCO2 and δ13Calgae reported in literature. δ13Cephippia was positively correlated with δ13C values of sedimentary organic matter (r 0.54), but up to 20.7‰ lower in all except one of the lakes (average −6.1‰). We conclude that incorporation of methanogenic carbon prior to ephippia formation must have been widespread by Daphnia in our study lakes, especially those with high CH4aq. Our results suggest a systematic relationship between δ13Cephippia values and CH4aq in small temperate lakes, and that δ13Cephippia analysis on sediment records may provide insights into past changes in in-lake CH4aq.
Resumo:
The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: −1.6 ± 0.4 ‰; δ18O: −0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to −1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at 12 °C. We conclude that the stable isotopic composition of Daphnia ephippia provides information on that of the parent Daphnia and of the food and water they were exposed to, with small offsets between Daphnia and ephippia relative to variations in Daphnia stable isotopic composition reported from downcore studies. However, our experiments also indicate that temperature may have a minor influence on the δ13C, δ15N and δ18O values of Daphnia body tissue and ephippia. This aspect deserves attention in further controlled experiments.