976 resultados para Damage detection
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in structures in order to improve reliability and reduce life-cycle costs. The greatest challenge for designing a SHM system is knowing what changes to look for and how to classify them. Different approaches for SHM have been proposed for damage identification, each one with advantages and drawbacks. This paper presents a methodology for improvement in vibration signal analysis using statistics information involving the probability density. Generally, the presence of noises in input and output signals results in false alarms, then, it is important that the methodology can minimize this problem. In this paper, the proposed approach is experimentally tested in a flexible plate using a piezoelectric (PZT) actuator to provide the disturbance.
Resumo:
This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
This paper presents a novel time domain approach for Structural Health Monitoring (SHM) systems based on Electromechanical Impedance (EMI) principle and Principal Component Coefficients (PCC), also known as loadings. Differently of typical applications of EMI applied to SHM, which are based on computing the Frequency Response Function (FRF), in this work the procedure is based on the EMI principle but all analysis is conducted directly in time-domain. For this, the PCC are computed from the time response of PZT (Lead Zirconate Titanate) transducers bonded to the monitored structure, which act as actuator and sensor at the same time. The procedure is carried out exciting the PZT transducers using a wide band chirp signal and getting their time responses. The PCC are obtained in both healthy and damaged conditions and used to compute statistics indexes. Tests were carried out on an aircraft aluminum plate and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for SHM applications. Finally, the results using EMI signals in both frequency and time responses are obtained and compared. © The Society for Experimental Mechanics 2014.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
Resumo:
The Acoustic emission (AE) technique, as one of non-intrusive and nondestructive evaluation techniques, acquires and analyzes the signals emitting from deformation or fracture of materials/structures under service loading. The AE technique has been successfully applied in damage detection in various materials such as metal, alloy, concrete, polymers and other composite materials. In this study, the AE technique was used for detecting crack behavior within concrete specimens under mechanical and environmental frost loadings. The instrumentations of the AE system used in this study include a low-frequency AE sensor, a computer-based data acquisition device and a preamplifier linking the AE sensor and the data acquisition device. The AE system purchased from Mistras Group was used in this study. The AE technique was applied to detect damage with the following laboratory tests: the pencil lead test, the mechanical three-point single-edge notched beam bending (SEB) test, and the freeze-thaw damage test. Firstly, the pencil lead test was conducted to verify the attenuation phenomenon of AE signals through concrete materials. The value of attenuation was also quantified. Also, the obtained signals indicated that this AE system was properly setup to detect damage in concrete. Secondly, the SEB test with lab-prepared concrete beam was conducted by employing Mechanical Testing System (MTS) and AE system. The cumulative AE events and the measured loading curves, which both used the crack-tip open displacement (CTOD) as the horizontal coordinate, were plotted. It was found that the detected AE events were qualitatively correlated with the global force-displacement behavior of the specimen. The Weibull distribution was vii proposed to quantitatively describe the rupture probability density function. The linear regression analysis was conducted to calibrate the Weibull distribution parameters with detected AE signals and to predict the rupture probability as a function of CTOD for the specimen. Finally, the controlled concrete freeze-thaw cyclic tests were designed and the AE technique was planned to investigate the internal frost damage process of concrete specimens.
Resumo:
A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensors
Resumo:
FBGs are excellent strain sensors, because of its low size and multiplexing capability. Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. Nevertheless, they only afford strain measurements at local points, so unless the damage affects the strain readings in a distinguishable manner, damage will go undetected. This paper show the experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie.
Resumo:
En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.
Resumo:
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the-potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.