891 resultados para Daily rainfall
Resumo:
Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
We describe the nature of recent (50 year) rainfall variability in the summer rainfall zone, South Africa, and how variability is recognised and responded to on the ground by farmers. Using daily rainfall data and self-organising mapping (SOM) we identify 12 internally homogeneous rainfall regions displaying differing parameters of precipitation change. Three regions, characterised by changing onset and timing of rains, rainfall frequencies and intensities, in Limpopo, North West and KwaZulu Natal provinces, were selected to investigate farmer perceptions of, and responses to, rainfall parameter changes. Village and household level analyses demonstrate that the trends and variabilities in precipitation parameters differentiated by the SOM analysis were clearly recognised by people living in the areas in which they occurred. A range of specific coping and adaptation strategies are employed by farmers to respond to climate shifts, some generic across regions and some facilitated by specific local factors. The study has begun to understand the complexity of coping and adaptation, and the factors that influence the decisions that are taken.
Resumo:
With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A quarter of a century of daily rainfall data from the Global Telecommunications System are used to define the temporal and spatial variability of the start of the wet season over Africa and surrounding extreme south of Europe and parts of the Middle East. From 1978 to 2002, the start of the wet season arrived later in the year for the majority of the region, as time progressed. In some parts of the continent, there was an annual increase in the start date of up to 4 days per year. On average, the start of the wet season arrived 9–21 days later from 1978 to 2002, depending on the threshold used to define the start of the rains (varying from 10–30 mm over 2 days, with no dry period in the following 10 days). It is noted that the inter-annual variability of the start of the wet season is high with the range of start dates varying on average from 116 to 142 days dependent on the threshold used to determine the start date. These results may have important implications for agriculturists on all levels (from the individual farmer to those responsible for regional food supply), as knowledge of potential future climate changes starts to play an increasingly important role in the agricultural decision-making process, such as sowing and harvesting times.
Resumo:
A time-dependent climate-change experiment with a coupled ocean–atmosphere general circulation model has been used to study changes in the occurrence of drought in summer in southern Europe and central North America. In both regions, precipitation and soil moisture are reduced in a climate of greater atmospheric carbon dioxide. A detailed investigation of the hydrology of the model shows that the drying of the soil comes about through an increase in evaporation in winter and spring, caused by higher temperatures and reduced snow cover, and a decrease in the net input of water in summer. Evaporation is reduced in summer because of the drier soil, but the reduction in precipitation is larger. Three extreme statistics are used to define drought, namely the frequency of low summer precipitation, the occurrence of long dry spells, and the probability of dry soil. The last of these is arguably of the greatest practical importance, but since it is based on soil moisture, of which there are very few observations, the authors’ simulation of it has the least confidence. Furthermore, long time series for daily observed precipitation are not readily available from a sufficient number of stations to enable a thorough evaluation of the model simulation, especially for the frequency of long dry spells, and this increases the systematic uncertainty of the model predictions. All three drought statistics show marked increases owing to the sensitivity of extreme statistics to changes in their distributions. However, the greater likelihood of long dry spells is caused by a tendency in the character of daily rainfall toward fewer events, rather than by the reduction in mean precipitation. The results should not be taken as firm predictions because extreme statistics for small regions cannot be calculated reliably from the output of the current generation of GCMs, but they point to the possibility of large increases in the severity of drought conditions as a consequence of climate change caused by increased CO2.
Resumo:
Jakarta is vulnerable to flooding mainly caused by prolonged and heavy rainfall and thus a robust hydrological modeling is called for. A good quality of spatial precipitation data is therefore desired so that a good hydrological model could be achieved. Two types of rainfall sources are available: satellite and gauge station observations. At-site rainfall is considered to be a reliable and accurate source of rainfall. However, the limited number of stations makes the spatial interpolation not very much appealing. On the other hand, the gridded rainfall nowadays has high spatial resolution and improved accuracy, but still, relatively less accurate than its counterpart. To achieve a better precipitation data set, the study proposes cokriging method, a blending algorithm, to yield the blended satellite-gauge gridded rainfall at approximately 10-km resolution. The Global Satellite Mapping of Precipitation (GSMaP, 0.1⁰×0.1⁰) and daily rainfall observations from gauge stations are used. The blended product is compared with satellite data by cross-validation method. The newly-yield blended product is then utilized to re-calibrate the hydrological model. Several scenarios are simulated by the hydrological models calibrated by gauge observations alone and blended product. The performance of two calibrated hydrological models is then assessed and compared based on simulated and observed runoff.
Resumo:
The Northeast of Brazil (NEB) shows high climate variability, ranging from semiarid regions to a rainy regions. According to the latest report of the Intergovernmental Panel on Climate Change, the NEB is highly susceptible to climate change, and also heavy rainfall events (HRE). However, few climatology studies about these episodes were performed, thus the objective main research is to compute the climatology and trend of the episodes number and the daily rainfall rate associated with HRE in the NEB and its climatologically homogeneous sub regions; relate them to the weak rainfall events and normal rainfall events. The daily rainfall data of the hydrometeorological network managed by the Agência Nacional de Águas, from 1972 to 2002. For selection of rainfall events used the technique of quantiles and the trend was identified using the Mann-Kendall test. The sub regions were obtained by cluster analysis, using as similarity measure the Euclidean distance and Ward agglomerative hierarchical method. The results show that the seasonality of the NEB is being intensified, i.e., the dry season is becoming drier and wet season getting wet. The El Niño and La Niña influence more on the amount of events regarding the intensity, but the sub-regions this influence is less noticeable. Using daily data reanalysis ERAInterim fields of anomalies of the composites of meteorological variables were calculated for the coast of the NEB, to characterize the synoptic environment. The Upper-level cyclonic vortex and the South atlantic convergene zone were identified as the main weather systems responsible for training of EPI on the coastland
Resumo:
Using the daily rainfall data from 1961 through 1980 the frequency of dry and wet periods was determined. The results of the frequency distribution of dry and wet periods indicated that observed data fit very closely an equation of the type Y = aebn. -after English summary
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudos sobre a climatologia das precipitações no Estado do Pará são essenciais para o planejamento das atividades agrícolas. A variação da precipitação anual e sazonal no Estado do Pará foi analisada com base em séries históricas de 23 anos (1976-1998) de dados diários de chuva. A análise foi realizada para 31 localidades do Estado do Pará, sendo os resultados representados em mapas com a utilização de técnicas de sistemas de informações geográficas (SIG). A variabilidade da precipitação anual e sazonal foi caracterizada com base no coeficiente de variação e no índice de variabilidade interanual relativo. A variação desses coeficientes para a precipitação anual no Estado do Pará foi de 15 a 30%. As características mensais da estação chuvosa, em termos de início, fim e duração, foram determinadas utilizando-se o critério proposto por KASSAM (1979). A variação entre as datas de plantio precoces e tardias corresponderam aos decêndios identificados pelos dias julianos 309319 e 353363, respectivamente.
Resumo:
This article describes the indigenous knowledge (IK) that agro-pastoralists in larger Makueni District, Kenya hold and how they use it to monitor, mitigate and adapt to drought. It examines ways of integrating IK into formal monitoring, how to enhance its value and acceptability. Data was collected through target interviews, group discussions and questionnaires covering 127 households in eight villages. Daily rainfall data from 1961–2003 were analysed. Results show that agro-pastoralists hold IK on indicators of rainfall variability; they believe in IK efficacy and they rely on them. Because agro-pastoralists consult additional sources, the authors interpret that IK forms a basic knowledge frame within which agro-pastoralists position and interpret meteorological forecasts. Only a few agro-pastoralists adapt their practices in anticipation of IK-based forecasts partly due to the conditioning of the actors to the high rainfall variability characteristic of the area and partly due to lack of resources. Non-drought factors such as poverty, inadequate resources and lack of preparedness expose agro-pastoralists to drought impacts and limit their adaptive capacity. These factors need to be understood and effectively addressed to increase agro-pastoralists’ decision options and the influence of IK-based forecasts on their decision-making patterns. The limited intergenerational transfer of IK currently threatens its existence in the longer term. One way to ensure its continued existence and use is to integrate IK into the education curriculum and to link IK with formal climate change research through the participation of the local people. However, further studies are necessary to address the reliability and validity of the identified IK indicators of climate variability and change.
Resumo:
Famines are often linked to drought in semi-arid areas of Sub-Saharan Africa where not only pastoralists, but also increasingly agro-pastoralists are affected. This study addresses the interplay between drought and famine in the rural semi-arid areas of Makueni district, Kenya, by examining whether, and how crop production conditions and agro-pastoral strategies predispose smallholder households to drought-triggered food insecurity. If this hypothesis holds, then approaches to deal with drought and famine have to target factors causing household food insecurity during non-drought periods. Data from a longitudinal survey of 127 households, interviews, workshops, and daily rainfall records (1961–2003) were analysed using quantitative and qualitative methods. This integrated approach confirms the above hypothesis and reveals that factors other than rainfall, like asset and labour constraints, inadequate policy enforcement, as well as the poverty-driven inability to adopt risk-averse production systems play a key role. When linking these factors to the high rainfall variability, farmer-relevant definitions and forecasts of drought have to be applied.