1000 resultados para DYNAMIC RECRYSTALLIZATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroslag refining is a useful remelting process by which clean steels can be produced for sophisticated applications. In this investigation, AISI 4340 steel has been electroslag refined and the improvement in its hot ductility has been assessed using hot torsion tests; electroslag refining has improved the hot ductility considerably. The temperature at which peak ductility is obtained has also increased — from 1473 K in the unrefined steel to 1573 K in ESR steel. Results indicate that it should be possible to subject the ESR ingot to much higher strains per unit operation during industrial hot working processes such as forging, which would result in a considerable saving of power. The improvement in hot ductility in ESR steel has been attributed primarily to the removal of non-metallic inclusions and the reduction in sulphur content. From the apparent activation energy estimated from the hot torsion data, the dynamic recrystallization process is identified as the mechanism controlling the rate of hot deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 +/- 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behavior of beta-quenched Zr-1 Nb-1Sn was studied in the temperature range 650-1050 degrees C and strain rate range 0.001-100 s(-1) using processing maps. These maps revealed three different domains: a domain of dynamic recovery at temperatures <700 degrees C and at strain rates <3 x 10(-3) s(-1), a domain of dynamic recrystallization in the temperature range 750-950 C-degrees and at strain rates <10(-2) S-1 with a peak at 910 degrees C and 10(-3) S-1 (in alpha + beta phase field), and a domain of large-grain superplasticity in the beta phase field at strain rates <10(-2) s(-1). In order to identify the rate controlling mechanisms involved in these domains, kinetic analysis was carried out to determine the various activation parameters. In addition, the processing maps showed a regime of flow instability spanning both alpha + beta and beta phase fields. The hot deformation behavior of Zr 1Nb-1Sn was compared with that of Zr, Zr-2.5Nb and Zircaloy-2 to bring out the effects of alloy additions. (C) 2006 Elsevier BN. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behaviour of Mg–3Al alloy has been studied using the processing-map technique. Compression tests were conducted in the temperature range 250–550 °C and strain rate range 3 × 10−4 to 102 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The various domains in the map corresponding to different dissipative characteristics have been identified as follows: (i) grain boundary sliding (GBS) domain accommodated by slip controlled by grain boundary diffusion at slow strain-rates (<10−3 s−1) in the temperature range from 350 to 450 °C, (ii) two different dynamic recrystallization (DRX) domains with a peak efficiency of 42% at 550 °C/10−1 s−1 and 425 °C/102 s−1 governed by stress-assisted cross-slip and thermally activated climb as the respective rate controlling mechanisms and (iii) dynamic recovery (DRV) domain below 300 °C in the intermediate strain rate range from 3 × 10−2 to 3 × 10−1 s−1. The regimes of flow instability have also been delineated in the processing map using an instability criterion. Adiabatic shear banding at higher strain rates (>101 s−1) and solute drag by substitutional Al atoms at intermediate strain rates (3 × 10−2 to 3 × 10−1 s−1) in the temperature range (350–450 °C) are responsible for flow instability. The relevance of these mechanisms with reference to hot working practice of the material has been indicated. The processing maps of Mg–3Al alloy and as-cast Mg have been compared qualitatively to elucidate the effect of alloying with aluminum on the deformation behaviour of magnesium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation characteristics of alpha-zirconium in the temperature range of 650 °C to 850 °C and in the strain-rate range of 10-3 to 102 s-1 are studied with the help of a power dissipation map developed on the basis of the Dynamic Materials Model.[7,8,9] The processing map describes the variation of the efficiency of power dissipation (η =2m/m + 1) calculated on the basis of the strain-rate sensitivity parameter (m), which partitions power dissipation between thermal and microstructural means. The processing map reveals a domain of dynamic recrystallization in the range of 730 °C to 850 °C and 10−2 to 1−1 with its peak efficiency of 40 pct at 800 °C and 0.1 s-1 which may be considered as optimum hot-working parameters. The characteristics of dynamic recrystallization are similar to those of static recrystallization regarding the sigmoidal variation of grain size (or hardness) with temperature, although the dynamic recrystallization temperature is much higher. When deformed at 650 °C and 10-3 s-1 texture-induced dynamic recovery occurred, while at strain rates higher than 1 s-1, alpha-zirconium exhibits microstructural instabilities in the form of localized shear bands which are to be avoided in processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processing maps for hot working of as-cast and wrought stainless steels of type AISI 304 have been developed in the temperature range 600 to 1250°C and strain rate range 0.001 to 100 s−1. The domain of dynamic recrystallization (DRX) in as-cast material occurs at higher temperatures (1250°C) and lower strain rates (0.001 s−1) than in the wrought steel (1100°C and 0.01 s−1). The effect is explained in terms of enhanced nucleation rate of DRX due to the carbide, ferrite particles, stable oxides/nitrides and second-phase intermetallics in the as-cast microstructure. The DRX domain is wider in the wrought material although the peak efficiency is less (32%) than in the as-cast case (40%). The flow instability regime is not significantly affected by the initial microstructure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.