114 resultados para DWI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumour (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT Methods and Materials: Five patients (3 W/2M, aged 56±13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analysed blindly and then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analysed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analysed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2±7.7 g/mL to 5.9±5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last 10 years, diffusion-weighted imaging (DWI) has become an important tool to investigate white matter (WM) anomalies in schizophrenia. Despite technological improvement and the exponential use of this technique, discrepancies remain and little is known about optimal parameters to apply for diffusion weighting during image acquisition. Specifically, high b-value diffusion-weighted imaging known to be more sensitive to slow diffusion is not widely used, even though subtle myelin alterations as thought to happen in schizophrenia are likely to affect slow-diffusing protons. Schizophrenia patients and healthy controls were scanned with a high b-value (4000s/mm(2)) protocol. Apparent diffusion coefficient (ADC) measures turned out to be very sensitive in detecting differences between schizophrenia patients and healthy volunteers even in a relatively small sample. We speculate that this is related to the sensitivity of high b-value imaging to the slow-diffusing compartment believed to reflect mainly the intra-axonal and myelin bound water pool. We also compared these results to a low b-value imaging experiment performed on the same population in the same scanning session. Even though the acquisition protocols are not strictly comparable, we noticed important differences in sensitivities in the favor of high b-value imaging, warranting further exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To illustrate the evolution of brain perfusion-weighted magnetic resonance imaging (PWI-MRI) in severe neonatal hypoxic-ischemic (HI) encephalopathy, and its possible relation to further neurodevelopmental outcome. MATERIALS AND METHODS: Two term neonates with HI encephalopathy underwent an early and a late MRI, including PWI. They were followed until eight months of age. A total of three "normal controls" were also included. Perfusion maps were obtained, and relative cerebral blood flow (rCBF) and cerebral blood volume (rCBV) values were measured. RESULTS: Compared to normal neonates, a hyperperfusion (increased rCBF and rCBV) was present on early scans in the whole brain. On late scans, hyperperfusion persisted in cortical gray matter (normalization of rCBF and rCBV ratios in white matter and basal ganglia, but not in cortical gray matter). Diffusion-weighted imaging (DWI) was normalized, and extensive lesions became visible on T2-weighted images. Both patients displayed very abnormal outcome: Patient 2 with the more abnormal early and late hyperperfusion being the worst. CONCLUSION: PWI in HI encephalopathy did not have the same temporal evolution as DWI, and remained abnormal for more than one week after injury. This could be a marker of an ongoing mechanism underlying severe neonatal HI encephalopathy. Evolution of PWI might help to predict further neurodevelopmental outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The DEFUSE (n_74) and EPITHET (n_101) studies have in common that a baseline MRI was obtained prior to treatment (tPA in DEFUSE; tPA or placebo in EPITHET) in the 3-6 hour time-window. There were however important methodological differences between the studies. A standardized reanalysis of pooled data was undertaken to determine the effect of these differences on baseline characteristics and study outcomes. Methods: To standardize the studies 1) the DWI and PWI source images were reprocessed and segmented using automated image processing software (RAPID); 2) patients were categorized according to their baseline MRI profile as either Target Mismatch (PWITmax_6/DWI ratio_ 1.8 and an absolute mismatch _15mL), Malignant (DWI or PWITmax_10 lesion _ 100 mL), or No Mismatch. 3) favorable clinical response was defined as NIHSS score of 0-1 or a _8 points improvement on the NIHSSS at day 90. Results: Prior to standardization there was no difference in the proportion of Target Mismatch patients between EPITHET and DEFUSE (54% vs 49%, p_0.6), but the EPITHET study had more patients with the Malignant profile than DEFUSE (35% vs 9%, p_0.01) and fewer patients that had No Mismatch (11% vs 42%, p_0.01). These differences in baseline MRI profiles between EPITHET and DEFUSE were largely eliminated by standardized processing of PWI and DWI images with RAPID software (Target Mismatch 49% vs 48%; Malignant 15% vs 8%; No Mismatch 36% vs 25%; p_NS for all comparisons) Reperfusion was strongly associated with a favorable clinical response in mismatch patients (figure). This relationship was not affected by the standardization procedures (pooled odds ratio of 8.8 based on original data and 6.6 based on standardized data). Conclusion: Standardization of image analyses procedures in acute stroke is important as non-standardized techniques introduce significant variability in DWI and PWI imaging characteristics. Despite methodological differences, the DEFUSE and EPITHET studies show a consistent and robust association between reperfusion and favorable clinical response in Target Mismatch patients regardless of standardization. These data support an RCT of iv tPA in the 3-6 hour time-window for Target Mismatch patients identified using RAPID.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. MATERIALS AND METHODS: The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. RESULTS: The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10(-3) mm(2)/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10(-3) mm(2)/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10(-3) mm(2)/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm(2) CONCLUSION: The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm(2) range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. KEY POINTS: ? For normal liver, tri-exponential IVIM model might be superior to bi-exponential ? A very fast compartment (D = 404.00 ± 43.7 × 10 (-3)  mm (2) /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model ? The compartment contributes to the IVIM signal only for b ≤ 15 s/mm (2.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently in this journal, Alkemade and Forstmann again challenged the evidence for a tripartite organisation to the subthalamic nucleus (STN) (Alkemade & Forstmann 2014). Additionally, they raised specific issues with the earlier published results using 3T MRI to perform in vivo diffusion weighted imaging (DWI) based segmentation of the STN (Lambert et al. 2012). Their comments reveal a common misconception related to the underlying methodologies used, which we clarify in this reply, in addition to highlighting how their current conclusions are synonymous with our original paper. The ongoing debate, instigated by the controversies surrounding STN parcellation, raises important implications for the assumptions and methodologies employed in mapping functional brain anatomy, both in vivo and ex vivo, and reveals a fundamental emergent problem with the current techniques. These issues are reviewed, and potential strategies that could be developed to manage them in the future are discussed further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MR imaging is currently regarded as a pivotal technique for the assessment of a variety of musculoskeletal conditions. Diffusion-weighted MR imaging (DWI) is a relatively recent sequence that provides information on the degree of cellularity of lesions. Apparent diffusion coefficient (ADC) value provides information on the movement of water molecules outside the cells. The literature contains many studies that have evaluated the role of DWI in musculoskeletal diseases. However, to date they yielded conflicting results on the use and the diagnostic capabilities of DWI in the area of musculoskeletal diseases. However, many of them have showed that DWI is a useful technique for the evaluation of the extent of the disease in a subset of musculoskeletal cancers. In terms of tissue characterization, DWI may be an adjunct to the more conventional MR imaging techniques but should be interpreted along with the signal of the lesion as observed on conventional sequences, especially in musculoskeletal cancers. Regarding the monitoring of response to therapy in cancer or inflammatory disease, the use of ADC value may represent a more reliable additional tool but must be compared to the initial ADC value of the lesions along with the knowledge of the actual therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: PRES is a reversible neurotoxic state presenting with headache, altered mental status, visual loss, and seizures. Delayed diagnosis can be avoided if radiological patterns could distinguish PRES from cerebral ischemia. METHODS: Clinical and radiological data were collected on all hospitalized patients who had (1) discharge diagnosis of PRES and (2) acute CTP/CTA. Data were compared with 10 TIA patients with proven cytotoxic edema on MRI. RESULTS: Of the four PRES patients found, three were correlated with acute blood pressure and one with chemotherapy. At the radiological level, quantitative analyses of the CTP parameters showed that 2 out of 4 patients had bilaterally reduced CBF-values (23.2-47.1 ml/100g/min) in occipital regions, as seen in the pathological regions of TIA patients (27.3 ± 13.5 ml/100g/min). When compared with TIA patients, the pathological ROI's demonstrated decreased CBV-values (3.4-5.6 ml/100g). Vasogenic edema on MRI FLAIR imaging was seen in only one PRES patient, and cytotoxic edema on DWI-imaging was never found. CT angiography showed in one PRES patient a vasospasm-like unilateral posterior cerebral artery. CONCLUSIONS: If confirmed by other groups, CTP and CTA imaging in patients with acute visual loss and confusion may help to distinguish PRES from bi-occipital ischemia. These radiological parameters may identify PRES patients at risk for additional tissue infarction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparus aurata larvae reared under controlled water-temperature conditions during the first 24 days after hatching displayed a linear relationship between age (t) and standard length (SL): SL = 2.68 + 0.19 t (r2 = 0.91l). Increments were laid down in the sagittae with daily periodicity starting on day of hatching. Standard length (SL) and sagittae radius (OR) were correlated: SL(mm) = 2.65 + 0.012 OR(mm). The series of measurements of daily growth increment widths (DWI), food density and water temperature were analyzed by means of time series analysis. The DWI series were strongly autocorrelated, the growth on any one day was dependent upon growth on the previous day. Time series of water temperatures showed, as expected, a random pattern of variation, while food consumed daily was a function of food consumed the two previous days. The DWI series and the food density were correlated positively at lags 1 and 2. The results provided evidence of the importance of food intake upon the sagittae growth when temperature is optimal (20ºC). Sagittae growth was correlated with growth on the previous day, so this should be taken into account when fish growth is derived from sagittae growth rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Medial temporal lobe abnormalities on DWI and functional imaging are occasionally observed in patients with transient global amnesia. We used CTP to study these patients during or briefly after resolution of their amnesic syndrome. MATERIALS AND METHODS: From 2002 onward, patients satisfying clinical criteria for transient global amnesia who underwent CTP were included. Patients with additional clinical features suggesting transient ischemic attack or stroke and those with an ischemic lesion on subsequent DWI were excluded. If deemed necessary by the clinician, DWI was performed within 10 days. RESULTS: Thirty patients with transient global amnesia underwent CTP at a median latency of 5.9 hours (interquartile range, 4.3-9.7 hours) after symptom onset. All findings, except for those in 1 patient, were normal, including those in the 14 patients with well-imaged hippocampi. In the patient with abnormal findings, CTP and PWI showed hypoperfusion in both lentiform nuclei extending into the insulae, with normalization on the repeat CTP 6 days later. In 10 patients, DWI was performed at a median latency of 2 days (interquartile range, 0-9 days). Of these, 2 showed punctate hippocampal lesions, often seen in transient global amnesia. In 2 patients excluded because of mildly atypical transient global amnesia and ischemic lesions on subsequent DWI, acute CTP findings were also normal. CONCLUSIONS: Patients with transient global amnesia had normal CTP findings in the acute phase with the exception of 1 patient with transient hypoperfusion in both basal ganglia. If imaging is performed for typical and atypical transient global amnesia, DWI should be the preferred method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DWI é uma técnica totalmente não invasiva que tem sido utilizada com sucesso por muitos anos em imagens do cérebro e recentemente incluída como parte da avaliação de outros sistemas, por exemplo, no abdome e pelve e na cabeça e pescoço. Apesar de a DWI e a medida dos valores de ADC serem capazes de fornecer informações de tipos histológicos específicos de tumores, a maioria dos centros de imagem ainda não os adotaram como parte da rotina na avaliação da cabeça e pescoço. A medida de ADC demonstrou ser útil para discriminar tipos específicos de tumores histológicos, especialmente para diferenciar lesões benignas sólidas de massas malignas, importante na avaliação de linfonodos cervicais, principalmente para diferenciar processos nodais benignos de malignos, para diferenciar as alterações pós-radioterapia de tumor residual e ter uso potencial para predizer sucesso terapêutico. Além disso, DWI/ADC parece ser um método mais seguro e mais acessível, considerando a ausência de radiação ionizante e ao maior custo do FDG-PET na localização de tumores e diferenciar massas benignas de malignas. Com todas essas vantagens e potencialidades, DWI/ADC certamente fará parte da rotina na avaliação por imagem da cabeça e pescoço.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Approximately two percent of Finns have sequels after traumatic brain injury (TBI), and many TBI patients are young or middle-aged. The high rate of unemployment after TBI has major economic consequences for society, and traumatic brain injury often has remarkable personal consequences, as well. Structural imaging is often needed to support the clinical TBI diagnosis. Accurate early diagnosis is essential for successful rehabilition and, thus, may also influence the patient’s outcome. Traumatic axonal injury and cortical contusions constitute the majority of traumatic brain lesions. Several studies have shown magnetic resonance imaging (MRI) to be superior to computed tomography (CT) in the detection of these lesions. However, traumatic brain injury often leads to persistent symptoms even in cases with few or no findings in conventional MRI. Aims and methods: The aim of this prospective study was to clarify the role of conventional MRI in the imaging of traumatic brain injury, and to investigate how to improve the radiologic diagnostics of TBI by using more modern diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) techniques. We estimated, in a longitudinal study, the visibility of the contusions and other intraparenchymal lesions in conventional MRI at one week and one year after TBI. We used DWI-based measurements to look for changes in the diffusivity of the normal-appearing brain in a case-control study. DTI-based tractography was used in a case-control study to evaluate changes in the volume, diffusivity, and anisotropy of the long association tracts in symptomatic TBI patients with no visible signs of intracranial or intraparenchymal abnormalities on routine MRI. We further studied the reproducibility of different tools to identify and measure white-matter tracts by using a DTI sequence suitable for clinical protocols. Results: Both the number and extent of visible traumatic lesions on conventional MRI diminished significantly with time. Slightly increased diffusion in the normal-appearing brain was a common finding at one week after TBI, but it was not significantly associated with the injury severity. Fractional anisotropy values, that represent the integrity of the white-matter tracts, were significantly diminished in several tracts in TBI patients compared to the control subjects. Compared to the cross-sectional ROI method, the tract-based analyses had better reproducibility to identify and measure white-matter tracts of interest by means of DTI tractography. Conclusions: As conventional MRI is still applied in clinical practice, it should be carried out soon after the injury, at least in symptomatic patients with negative CT scan. DWI-related brain diffusivity measurements may be used to improve the documenting of TBI. DTI tractography can be used to improve radiologic diagnostics in a symptomatic TBI sub-population with no findings on conventional MRI. Reproducibility of different tools to quantify fibre tracts vary considerably, which should be taken into consideration in the clinical DTI applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.