921 resultados para DROUGHT TOLERANCE
Resumo:
A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Asia, about 50% of all the rice land is rainfed and, although rice yields in irrigated systems have doubled and tripled over the past 30 years, only modest gains have occurred in rainfed rice systems. In part, this is because of the difficulty in improving rice varieties for environments that are heterogeneous and variable, and in part because there has been little effort to breed rice for drought tolerance. Information available for other cereals (for example, maize, Bänziger et al 2000) and for wheat and the limited or circumstantial evidence available for rice indicate that we can now breed varieties that have improved yield under drought and produce high yields in the good seasons. This manual aims to help plant breeders develop such varieties. While the manual focuses on drought tolerance, this must be integrated with the mainstream breeding program that also deals with agronomic adaptation, grain quality, and pest and disease resistance. Mackill et al (1996) have written a guide to the overall improvement of rice for rainfed conditions. This manual should be seen as an amplification of and updating of the section on drought tolerance in that book. Because final proof of many approaches for breeding drought-tolerant rice is not yet available, and because some aspects may not work in all environments and germplasm, we recommend that you use this manual with caution. Test the suggested approaches and only implement them on a large scale if they are effective and realistic for your own situation
Resumo:
Regionális klímaváltozási forgatókönyvek szerint hazánk éghajlata az elkövetkező 90 évben a mainál jóval melegebb, a nyári évszakban csapadékszegényebb, összességében pedig szárazabb lesz. Kutatásunk célja volt felmérni szárazságtűrésük szerint a legjelentősebb faiskolák katalógusában fellelhető fa- és cserjefajokat (a gyűjtésben nem szerepelnek a faj alatti taxonok). A vizsgálatainkban szereplő öt faiskola növénykínálatát a tudományos nevek ellenőrzése után összesítettük, majd ezt követően az egyes fajokat vízigény szerinti kategóriákba soroltuk. A tényleges statisztikai értékelésbe – a 451 összegyűjtött faj tudományos neveinek ellenőrzése után – 420 fajt vontunk be, melyek 20%-a vízigényes, 53%-a közepesen vízigényes és 27%-a szárazságtűrő. Várakozásainkkal ellentétben a vízigényes fajok részaránya kevésnek mondható, ugyanakkor a szárazságtűrő fajok magasabb aránya kívánatos lenne. Ezért, a gyakorlati alkalmazást elősegítve, kiemeltünk olyan nemzetségeket, melyek kereskedelmi forgalmazását meg kellene kezdeni vagy fokozni, mint pl a Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca Zanthoxylum, Zelkova, illetve olyanokat, melyek telepítését a jövőben nem, vagy csak kellő körültekintéssel javasoljuk, mint például a Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron nemzetségek. _____ According to regional climate change scenarios, the climate in Hungary will be warmer. Less precipitation is predicted in the summer seasons so, on the whole, it will be drier over the next 90 years. Our research attempted to survey the ornamental plant species in the most important nurseries in Hungary, in terms of their drought tolerance. The intraspecifi c taxa are not included. The plant assortment of the fi ve nurseries was merged after researching their scientifi c names. We then categorized species to 3 groups of drought tolerance. Out of 451 species, 420 of them were used in the statistical research. 20% of them were water demanding, 53% were medium drought tolerant and 27% were drought tolerant. In contrast to our initial expectation, the proportion of water demanding species was not too high. Nevertheless, the proportion of drought tolerant species should have been greater. We classifi ed the genera to assist in practical application. The trade of some of these species, such as Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca, Zanthoxylum, Zelkova should be initiated or increased in the future. Other species, especially Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron are not recommended due to either their drought intolerance or their high maintenance requirement.
Resumo:
1. Faster growing, larger and/or more aggressive crayfish species are predicted to dominate permanent waterbodies. We tested this prediction using a 9 year dataset for two species of crayfish (Procambarus alleni and Procambarus fallax) co-existing in a sub-tropical flowing slough in southern Florida. Using a series of laboratory and mesocosm experiments we also compared life history traits and performance of the respective species to test mechanisms that could explain dominance shifts in the local crayfish assemblages. 2. Over the 9-year period, P. alleni densities were the greatest in shallower, shorterhydroperiod areas bordering the slough, while P. fallax densities were higher in deeper, longer-hydroperiod central areas. These areas were separated by 0.8–2 km of continuous wetland with no apparent barriers to movement between them. 3. Density of P. fallax was not strongly affected by any measures of hydrological variation, while P. alleni density increased with more severe drought conditions. Following the strongest droughts, P. alleni colonized areas in the centre of the slough where they had been absent or scarce in wetter years. 4. We conducted experiments to compare growth rates, drought tolerance, and competitive dominance of these species. P. alleni survived drought conditions better, had higher growth rates, and was the dominant competitor for space and food. While drought probably limits P. fallax in the drier slough habitats, neither drought sensitivity nor interspecific competition with P. fallax can explain decreases of P. alleni with wetter conditions. 5. Our results indicate that a competition-colonization tradeoff cannot explain the crayfish compositional dynamics in this wetland because P. alleni is both the best competitor and the best at surviving in and colonizing areas with the strongest droughts. Future attention should focus on the potential for selective effects of predators that co-vary with hydrology. 6. The traits (large size, fast growth, competitive dominance) exhibited by P. alleni, which is absent in long-hydroperiod wetlands, are those exhibited by dominant crayfish in permanent lakes and streams containing fish. Although these traits make crayfish less vulnerable to fish in some lakes and streams, life-history models of community structure across permanence gradients suggest the opposite traits should be favoured for co-existence with fish.
Resumo:
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.
Resumo:
2013
Resumo:
Introduction. Specific sites selecting criteria. Soil characteristics for establishment of a specific site. Main steps and recommendations for a specific site selection and placement. Climatic characterization.
Resumo:
Despite its outstanding position, the Brazilian citriculture is established on a very limited pool of varieties that limits its expansion and restricts the fruit availability throughout the year. This situation determines the urgent necessity of developing alternative scion and rootstock cultivars, with good performance under local conditions. `Folha Murcha` sweet orange (Citrus sinensis (L.) Osbeck) is a late-harvest cultivar, suitable both for the juice processing industry and the fresh fruit market, being described as tolerant to citrus canker (Xanthomonas citri subsp. citri Schaad et al.), and less affected by citrus variegated chlorosis (Xylella fastidiosa Wells et al.). A study was conducted in Bebedouro, Sao Paulo State, Brazil, to evaluate the horticultural performance of `Folha Murcha` sweet orange budded onto 12 rootstocks: the citrandarin `Changsha` mandarin (Citrus reticulata Blanco) x Poncirus trifoliata `English Small`: the hybrid `Rangpur` lime (Citrus limonia Osbeck) x `Swingle` citrumelo (P. trifoliata (L.) Raf x Citrus paradisi Macfad.); the trifoliates (P. trifoliata (L.) Raf.)`Rubidoux`, `FCAV`, and `Flying Dragon` (P. trifoliata var. monstrosa); the `Sun Chu Sha Kat` mandarin (C. reticulata Blanco); the `Sunki` mandarin (Citrus sunki (Hayata) Hart. ex. Tanaka); the `Rangpur` limes (C. limonia Osbeck) `Cravo Limeira` and `Cravo FCAV`; `Carrizo` citrange (C. sinensis x P. trifoliata), `Swingle` citrumelo (P. trifoliata x C. paradisi), and `Orlando` tangelo (C. paradisi x Citrus tangerina cv. `Dancy`). The experimental grove was planted in 2001, using a 7 m x 4 m spacing, in a randomized block design, with five replications and two plants per plot. No supplementary irrigation was applied. Fruit yield, canopy volume, tree tolerance to drought and to citrus variegated chlorosis, and fruit quality were assessed for each rootstock. Trees grafted onto the `Flying Dragon` trifoliate were smaller in size, but had largest yield efficiency when compared to those grafted onto other rootstocks. Lower alternate bearing index was observed on trees budded onto `Cravo FCAV` `Rangpur` lime. Both `Rangpur` lime rootstocks and the `Sunki` mandarin induced higher tree tolerance to drought. The `Flying Dragon` trifoliate induced better fruit quality and higher tolerance to citrus variegated chlorosis (CVC) to `Folha Murcha` trees. A cluster multivariate analysis identified three groups of rootstocks with similar effects on `Folha Murcha` tree performance. Among the 12 evaluated rootstocks, the `Flying Dragon` trifoliate has a unique effect on plant growth, tolerance to drought and CVC, fruit yield and fruit quality of `Folha Murcha` trees, and may be better suited for high-density plantings. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sorghum [Sorghum bicolor (L,) Moench] hybrids containing the stay-green trait retain more photosynthetically active leaves under drought than do hybrids that do not contain this trait. Since the Longevity and photosynthetic capacity of a leaf are related to its N status, it is important to clarify the role of N in extending leaf greenness in stay-green hybrids. Field studies were conducted in northeastern Australia to examine the effect of three water regimes and nine hybrids on N uptake and partitioning among organs. Nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a fully irrigated control, post-flowering water deficit, and terminal water deficit. For hybrids grown under terminal water deficit, stay-green was viewed as a consequence of the balance between N demand by the grain and N supply during gain filling. On the demand side, grain numbers were 16% higher in the four stay-green than in the five senescent hybrids. On the supply side, age-related senescence provided an average of 34 and 42 kg N ha(-1) for stay-green and senescent hybrids, respectively. In addition, N uptake during grain filling averaged 116 and 82 kg ha(-1) in stay-green and senescent hybrids. Matching the N supply from these two sources with grain N demand found that the shortfall in N supply for grain filling in the stay-green and senescent hybrids averaged 32 and 41 kg N ha(-1) resulting in more accelerated leaf senescence in the senescent hybrids. Genotypic differences in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen and N uptake during grain filling. Leaf nitrogen concentration at anthesis was correlated with onset (r = 0.751**, n = 27) and rate (r = -0.783**, n = 27) of leaf senescence ender terminal water deficit.
Resumo:
Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.
Resumo:
The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.
Resumo:
Experiments involving 14 accessions of Panicum miliaceum L. (Proso millet) and 11 accessions of Setaria italica L. (Foxtail millet) have demonstrated variability in the degree of osmoregulative capacity among these accessions. Birdseed millet is generally claimed to be sensitive to drought stress, apparently because of a shallow root system. Accessions with high osmoregulative capacity demonstrate at least some drought tolerance. Osmoregulative capacity was measured on flag leaves of headed millet plants in pots undergoing water stress in a controlled environment chamber. Osmoregulative capacity was determined from the relationship between osmotic potential and leaf water potential; and the logarithmic relationship between osmotic potential and relative water content. The group of accessions of S. italica showed an overall level of osmoregulative capacity which was greater than that observed for the group of P. miliaceum accessions. Four accessions of S. italica (108042, 108463, 108541 and 108564) and one accession of P. miliaceum (108104) demonstrated high osmoregulative capacity. Differences of 1.05 MPa or more between observed and estimated osmotic potential were found at relative water contents of 80 % among these accessions. The extent of osmoregulative capacity was associated with osmotic potential at full turgor and the rate of decline in osmotic potential as leaf water potentail declined.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.
Resumo:
The objective of this work was to evaluate the effect of drought and nitrogen (N) stresses on stomatal conductance of three maize cultivars grown in the field. The stomatal conductance of Sol da Manhã variety (BRS 4157) and Pioneer 6875 hybrid, under drought and high N, was lower than under drought and low N, which indicates drought tolerance, since these cultivars did not exhibit reduction in grain yield by drought, as observed for Amarelão variety, which flowered under more severe drought. 'Sol da Manhã' exhibited shorter anthesis-silking interval under high N than under low N, an additional indication of tolerance.