926 resultados para DRINKING WATER
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in Sao Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A. allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%). The results revealed that 70% of A. caviare, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern.
Resumo:
A high incidence of waterborne diseases is observed worldwide and in order to address contamination problems prior to an outbreak, quantitative microbial risk assessment is a useful tool for estimating the risk of infection. The objective of this paper was to assess the probability of Giardia infection from consuming water from shallow wells in a peri-urban area. Giardia has been described as an important waterborne pathogen and reported in several water sources, including ground waters. Sixteen water samples were collected and examined according to the US EPA (1623, 2005). A Monte Carlo method was used to address the potential risk as described by the exponential dose response model. Giardia cysts occurred in 62.5% of the samples (0.1-36.1 cysts/l). A median risk of 10-1 for the population was estimated and the adult ingestion was the highest risk driver. This study illustrates the vulnerability of shallow well water supply systems in peri-urban areas.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2009/1026/thumbnail.jpg
Resumo:
Many contaminants are currently unregulated by the government and do not have a set limit, known as the Maximum Contaminant Level, which is dictated by cost and the best available treatment technology. The Maximum Contaminant Level Goal, on the other hand, is based solely upon health considerations and is non-enforceable. In addition to being naturally occurring, contaminants may enter drinking water supplies through industrial sources, agricultural practices, urban pollution, sprawl, and water treatment byproducts. Exposure to these contaminants is not limited to ingestion and can also occur through dermal absorption and inhalation in the shower. Health risks for the general public include skin damage, increased risk of cancer, circulatory problems, and multiple toxicities. At low levels, these contaminants generally are not harmful in our drinking water. However, children, pregnant women, and people with compromised immune systems are more vulnerable to the health risks associated with these contaminants. Vulnerable peoples should take additional precautions with drinking water. This research project was conducted in order to learn more about our local drinking water and to characterize our exposure to contaminants. We hope to increase public awareness of water quality issues by educating the local residents about their drinking water in order to promote public health and minimize exposure to some of the contaminants contained within public water supplies.
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.
Resumo:
In the poultry industry, the use of water with adequate physical, chemical and microbiological quality it is of fundamental importance. Since many birds have access to the same water source, quality problems will affect a great number of animals. The drinking water plays an important role in the transmission of some bacterial, viral and protozoan diseases that are among the most common poultry diseases. Important factors to prevent waterborne diseases in broiler production are the protection of supply sources, water disinfection and the quality control of microbiological, chemical and physical characteristics. Water is an essential nutrient for birds and therefore quality preservation is fundamental for good herd performance. The farmer may prevent many diseases in bird flocks by controlling the quality of the ingested water, will certainly result in decreased costs and increased profit, two essential aims of animal production nowadays.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently a textile azo dye processing plant effluent was identified as one of the sources of mutagenic activity detected in the Cristais River, a drinking water source in Brazil [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597]. Besides presenting high mutagenic activity in the Salmonella/microsome assay, the mutagenic nitro-aminoazobenzenes dyes CI Disperse Blue 373, Cl Disperse Violet 93, and CI Disperse Orange 37 [G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64] as well as benzidine, a known carcinogenic compound [T.M. Mazzo, A.A. Saczk, G.A. Umbuzeiro, M.V.B. Zanoni, Analysis of aromatic amines in surface waters receiving wastewater from textile industry by liquid chromatographic with eletrochemical detection, Anal. Lett., in press] were found in this effluent. After similar to 6 km from the discharge of this effluent, a drinking water treatment plant treats and distributes the water to a population of approximate 60,000. As shown previously, the mutagens in the DWTP intake water are not completely removed by the treatment. The water used for human consumption presented mutagenic activity related to nitro-aromatics and aromatic amines compounds probably derived from the cited textile processing plant effluent discharge [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z.. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597; G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the multagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64]. Therefore, it is important to evaluate the possible risks involved in the human consumption of this contaminated water. With that objective, one sample of the cited industrial effluent was tested for carcinogenicity in the aberrant crypt foci medium-term assay in colon of Wistar rats. The rats received the effluent in natura through drinking water at concentrations of 0.1%, 1%, and 10%. The effluent mutagenicity was also confirmed in the Salmonella/microsome assay with the strains TA98 and YG1041. There was an increased number of preneoplastic lesions in the colon of rats exposed to concentrations of 1% and 10% of the effluent, and a positive response for both Salmonella strains tested. These results indicate that the discharge of the effluent should be avoided in waters used for human consumption and show the sensitivity of the ACF crypt foci assay as an important tool to evaluate the carcinogenic potential of environmental complex mixtures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The water produced by the Cristais River Drinking Water Treatment Plant (CR-DWTP) repeatedly produced mutagenic responses that could not be explained by the presence of disinfection byproducts (DBPs) generated by the reaction of humic acids and chlorine. In order to determine the possible role of chlorinated dye products in this mutagenic activity, solutions of a black dye commercial product (BDCP) composed of C. I. Disperse Blue 373, C. I. Disperse Orange 37, C. I. Disperse Violet 93, and chemically reduced BDCP (R-BDCP) were chlorinated in a manner similar to that used by the CR-DWTP. The resulting solutions were extracted with XAD-4 along with one drinking water sample collected from the CR-DWTP. All extracts showed mutagenic activity in the Salmonella/microsome assay. Dye components of the BDCP as well as its reduced chlorinated (Cl-R-BDCP) derivative were detected in the drinking water sample by analysis with a high performance liquid chromatography/diode array detector (HPLC/DAD). The mutagenicity results of these products suggest that they are, at least in part, accounting for the mutagenic activity detected in the drinking water samples from the Cristais River. The data obtained in this study have environmental and health implications because the chlorination of the BDCP and the R-BDCP leads to the formation of mutagenic compounds (Cl-BDCP and Cl-R-BDCP), which are potentially important disinfection byproducts that can contaminate the drinking water as well as the environment.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
In this study, an in situ derivatization and extraction method for the determination of pentachlorophenol (PCP) has been applied successfully in the analysis of water samples. The PCP derivative analysis was performed by gas-liquid chromatography with electron capture detection. The limit of detection of the method is 1 μg/L and recoveries averaged 78-108% for PCP acetate at levels of 2, 10 and 20 μg/L.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
Background. Iron-deficiency anemia currently is the most frequently occurring nutritional disorder worldwide. Previous Brazilian studies have demonstrated that drinking water fortified with iron and ascorbic acid is an adequate vehicle for improving the iron supply for children frequenting day-care centers. Objective. The objective of this study was to clarify the role of ascorbic acid as a vehicle for improving iron intake in children in day-care centers in Brazil. Methods. A six-month study was conducted on 150 children frequenting six day-care centers divided into two groups of three day-care centers by drawing lots: the iron-C group (3 day-care centers, n = 74), which used water fortified with 10 mg elemental iron and 100 mg ascorbic acid per liter, and the comparison group (3 day-care centers, n = 76), which used water containing only 100 mg ascorbic acid per liter. Anthropometric measurements and determinations of capillary hemoglobin were performed at the beginning of the study and after six months of intervention. The food offered at the day-care centers was also analyzed. Results. The fo od offered at the day-care center was found to be deficient in ascorbic acid, poor in heme iron, and adequate in non-heme iron. Supplementation with fortified drinking water resulted in a decrease in the prevalence of anemia and an increase in mean hemoglobin levels associated with height gain in both groups. Conclusions. Fortification of drinking water with iron has previously demonstrated effectiveness in increasing iron supplies. This simple strategy was confirmed in the present study. The present study also demonstrated that for populations receiving an abundant supply of non-heme iron, it is possible to control anemia in a simple, safe, and inexpensive manner by adding ascorbic acid to drinking water. © 2005, The United Nations University.