937 resultados para DNA Breaks, Double-Stranded
Resumo:
Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nine non-nematode-derived double-stranded RNAs (dsRNAs), designed for use as controls in RNA interference (RNAi) screens of neuropeptide targets, were found to induce aberrant phenotypes and an unexpected inhibitory effect on motility of root knot nematode Meloidogyne incognita J2s following 24 h soaks in 0.1 mg/ml dsRNA; a simple soaking procedure which we have found to elicit profound knockdown of neuronal targets in Globodera pallida J2s. We have established that this inhibitory phenomenon is both time- and concentration-dependent, as shorter 4 h soaks in 0.1 mg/ml dsRNA had no negative impact on M. incognita J2 stage worms, yet a 10-fold increase in concentration to 1 mg/ml for the same 4 h time period had an even greater qualitative and quantitative impact on worm phenotype and motility. Further, a 10-fold increase of J2s soaked in 0.1 mg/ml dsRNA did not significantly alter the observed phenotypic aberration, which suggests that dsRNA uptake of the soaked J2s is not saturated under these conditions. This phenomenon was not initially observed in potato cyst nematode G. pallida J2s, which displayed no aberrant phenotype, or diminution of migratory activity in response to the same 0.1 mg/ml dsRNA 24 h soaks. However, a 10-fold increase in dsRNA to 1 mg/ml was found to elicit comparable irregularity of phenotype and inhibition of motility in G. pallida, to that initially observed in M. incognita following a 24 h soak in 0.1 mg/ml dsRNA. Again, a 10-fold increase in the number of G. pallida J2s soaked in the same volume of 1 mg/ml dsRNA preparation did not significantly affect the observed phenotypic deviation. We do not observe any global impact on transcript abundance in either M. incognita or G. pallida J2s following 0.1 mg/ml dsRNA soaks, as revealed by reverse transcriptase-PCR and quantitative PCR data. This study aims to raise awareness of a phenomenon which we observe consistently and which we believe signifies a more expansive deficiency in our knowledge and understanding of the variables inherent to RNAi-based investigation.
Resumo:
Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
Resumo:
Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.
Resumo:
Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.
Resumo:
To determine the incidence of rotavirus infection among dairy herds in the State of Sdo Paulo, Brazil, 576 faecal samples obtained from calves aged 1-45 days with and without diarrhoea, reared on 63 dairy cattle farms, were analyzed. Polyacrylamide gel electrophoresis (PAGE) identified 28 samples positive for group A rotavirus, while four samples, two diarrhoeic and two non-diarrhoeic, showed a bisegmented genome with a typical picobirnavirus pattern. Electron microscopy revealed spherical virus particles with a diameter of 37 nm and without a defined surface structure. The present study is the first report of a bisegmented virus identified in cattle in Brazil. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Abstract Background The ability to manipulate the genetic networks underlying the physiological and behavioural repertoires of the adult honeybee worker (Apis mellifera) is likely to deepen our understanding of issues such as learning and memory generation, ageing, and the regulatory anatomy of social systems in proximate as well as evolutionary terms. Here we assess two methods for probing gene function by RNA interference (RNAi) in adult honeybees. Results The vitellogenin gene was chosen as target because its expression is unlikely to have a phenotypic effect until the adult stage in bees. This allowed us to introduce dsRNA in preblastoderm eggs without affecting gene function during development. Of workers reared from eggs injected with dsRNA derived from a 504 bp stretch of the vitellogenin coding sequence, 15% had strongly reduced levels of vitellogenin mRNA. When dsRNA was introduced by intra-abdominal injection in newly emerged bees, almost all individuals (96 %) showed the mutant phenotype. An RNA-fragment with an apparent size similar to the template dsRNA was still present in this group after 15 days. Conclusion Injection of dsRNA in eggs at the preblastoderm stage seems to allow disruption of gene function in all developmental stages. To dissect gene function in the adult stage, the intra-abdominal injection technique seems superior to egg injection as it gives a much higher penetrance, it is much simpler, and it makes it possible to address genes that are also expressed in the embryonic, larval or pupal stages.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, with glomerulonephritis representing a frequent and serious manifestation. SLE is characterized by the presence of various autoantibodies, including anti-DNA antibodies that occur in approximately 70% of patients with SLE and which contribute to disease pathogenesis. Consequently, immunosuppressive therapies are applied in the treatment of SLE to reduce autoantibody levels. However, increasing evidence suggests that DNA--especially double--stranded DNA-constitutes an important pathogenic factor that is able to activate inflammatory responses by itself in autoimmune diseases. Therefore, modifying the structure of DNA to reduce its pathogenicity might be a more targeted approach for the treatment of SLE than immunosuppression. This article presents information in support of this strategy, and discusses the potential methods of DNA structure manipulation--in light of data obtained from mouse models of SLE--including topoisomerase I inhibition, administration of DNase I, or modification of histones using heparin or histone deacetylase inhibitors.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs
Resumo:
Interferon (IFN) type-I is of utmost importance in the innate antiviral defence of eukaryotic cells. The cells express intra- and extracellular receptors that monitor their surroundings for the presence of viral genomes. Bovine viral diarrhoea virus (BVDV), a Pestivirus of the family Flaviviridae, is able to prevent IFN synthesis induced by poly(IC), a synthetic dsRNA. The evasion of innate immunity might be a decisive ability of BVDV to establish persistent infection in its host. We report that ds- as well as ssRNA fragments of viral origin are able to trigger IFN synthesis, and that the viral envelope glycoprotein E(rns), that is also secreted from infected cells, is able to inhibit IFN expression induced by these extracellular viral RNAs. The RNase activity of E(rns) is required for this inhibition, and E(rns) degrades ds- and ssRNA at neutral pH. In addition, cells infected with a cytopathogenic strain of BVDV contain more dsRNA than cells infected with the homologous non-cytopathogenic strain, and the intracellular viral RNA was able to excite the IFN system in a 5'-triphosphate-, i.e. RIG-I-, independent manner. Functionally, E(rns) might represent a decoy receptor that binds and enzymatically degrades viral RNA that otherwise might activate the IFN defence by binding to Toll-like receptors of uninfected cells. Thus, the pestiviral RNase efficiently manipulates the host's self-nonself discrimination to successfully establish and maintain persistence and immunotolerance.
Resumo:
Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual's zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported consumption of meat was less than once per month and phytate levels were high, received 20 mg zinc as zinc sulfate or placebo daily for 17 days in a randomized placebo-controlled trial. Plasma zinc concentrations were determined by inductively coupled plasma mass spectrometry. Cells from whole blood at the baseline and end point of the study were embedded in agarose, electrophoresed, and stained before being scored by an investigator blinded to the treatments. Although zinc supplementation did not significantly affect plasma zinc, mean (± SEM) comet tail moment measurement of supplemented women decreased from 39.7 ± 2.7 to 30.0 ± 1.8 (P< .005), indicating a decrease in DNA strand breaks in zinc-supplemented individuals. These findings demonstrated that the comet assay could be used as a functional assay to assess the effects of zinc supplementation on DNA integrity in samples collected in a field setting where food sources of bioavailable zinc are limited. Furthermore, the comet assay was sufficiently sensitive to detect changes in zinc status as a result of supplementation despite no significant changes in plasma zinc.
Resumo:
Changes in DNA methylation during tobacco pollen development have been studied by confocal fluorescence microscopy using a monoclonal anti-5-methylcytosine (anti-m5C) antibody and a polyclonal anti-histone H1 (anti-histone) antibody as an internal standard. The specificity of the anti-m5C antibody was demonstrated by a titration series against both single-stranded DNA and double-stranded DNA substrates in either the methylated or unmethylated forms. The antibody was found to show similar kinetics against both double- and single-stranded DNA, and the fluorescence was proportional to the amount of DNA used. No signal was observed with unmethylated substrates. The extent of methylation of the two pollen nuclei remained approximately constant after the mitotic division that gave rise to the vegetative and generative nuclei. However, during the subsequent development of the pollen, the staining of the generative nucleus decreased until it reached a normalized value of \documentclass[12pt]{minimal} \usepackage{wasysym} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\frac{1}{5}\end{equation*}\end{document} of that of the vegetative nucleus. The use of a confocal microscope makes these data independent of possible focusing artefacts. The anti-histone antibody was used as a control to show that, while the antibody staining directed against 5-methylcytosine changed dramatically during pollen maturation, the histone signal did not. We observed the existence of structural dimorphism amongst tobacco pollen grains, the majority having three pollen apertures and the rest with four. However, the methylation changes observed occurred to the same extent in both subclasses.
Resumo:
The linear pentadecapeptide antibiotic, gramicidin D, is a naturally occurring product of Bacillus brevis known to form ion channels in synthetic and natural membranes. The x-ray crystal structures of the right-handed double-stranded double-helical dimers (DSDHℛ) reported here agree with 15N-NMR and CD data on the functional gramicidin D channel in lipid bilayers. These structures demonstrate single-file ion transfer through the channels. The results also indicate that previous crystal structure reports of a left-handed double-stranded double-helical dimer in complex with Cs+ and K+ salts may be in error and that our evidence points to the DSDHℛ as the major conformer responsible for ion transport in membranes.