66 resultados para DIASTOLE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous designs of bioprosthetic valves exist. The sutureless surgical valve is a newer design concept which combines elements of the transcatheter valve technology with surgical valves. This design aims at shorter and easier implantation. It was the aim of this study to perform hemodynamic and kinematic measurements for this type of valves to serve as a baseline for following studies which investigate the effect of the aortic root on the valve performance. To this end, the Edwards Intuity aortic valve was investigated in a new in vitro flow loop mimicking the left heart. The valve was implanted in a transparent, compliant aortic root model, and the valve kinematics was investigated using a high speed camera together with synchronized hemodynamic measurements of pressures and flows. The valve closure was asynchronous (one by one leaflet), and the valve started to close before the deceleration of the fluid. The aortic root model showed a dilation of the sinuses which was different to the ascending aorta, and the annulus was found to move towards the left ventricle during diastole and towards the aorta during systole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotid atherosclerotic disease is highly related to cerebrovascular events. Carotid endarterectomy is the common operation method to treat this disease. In this study, hemodynamics analyses are performed on the carotid arteries in three patients, whose right carotid artery had been treated by carotid endarterectomy and the left carotid artery remained untreated. Flow and loading conditions are compared between these treated and untreated carotid arteries and evaluation of the operative results is discussed. Patient-specific models are reconstructed from MDCT data. Intraoperative ultrasound flow measurements are performed on the treated carotid arteries and the obtained data are used as the boundary conditions of the models and the validations of the computational results. Finite volume method is employed to solve the transport equations and the flow and loading conditions of the models are reported. The results indicate that: (i) in two of the three patients, the internal-to-external flow rate ratio in the untreated carotid artery is larger than that in the treated one, and the average overall flow split ratio by summing up the data of both the left and right carotid arteries is about 2.15; (ii) in the carotid bulb, high wall shear stress occurs at the bifurcation near the external carotid artery in all of the cases without hard plaques; (iii) the operated arteries present low time-averaged wall shear stress at the carotid bulb, especially for the treated arteries with patch technique, indicating the possibility of the recurrence of stenosis; (iv) high temporal gradient of wall shear stress (>35 Pa/s) is shown in the narrowing regions along the vessels; and (v) in the carotid arteries without serious stenosis, the maximum velocity magnitude during mid-diastole is 32~37% of that at systolic peak, however, in the carotid artery with 50% stenosis by hard plaques, this value is nearly doubled (64%). The computational work quantifies flow and loading distributions in the treated and untreated carotid arteries of the same patient, contributing to evaluation of the operative results and indicating the recurrent sites of potential atheromatous plaques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of thermal tolerance in marine ectotherms are key in understanding climate effects on ecosystems; however, tolerance of their larval stages has rarely been analyzed. Larval stages are expected to be particularly sensitive. Thermal stress may affect their potential for dispersal and zoogeographical distribution. A mismatch between oxygen demand and the limited capacity of oxygen supply to tissues has been hypothesized to be the first mechanism restricting survival at thermal extremes. Therefore, thermal tolerance of stage zoea I larvae was examined in two populations of the Chilean kelp crab Taliepus dentatus, which are separated by latitude and the thermal regime. We measured temperature-dependent activity, oxygen consumption, cardiac performance, body mass and the carbon (C) and nitrogen (N) composition in order to: (1) examine thermal effects from organismal to cellular levels, and (2) compare the thermal tolerance of larvae from two environmental temperature regimes. We found that larval performance is affected at thermal extremes indicated by decreases in activity, mainly in maxilliped beat rates, followed by decreases in oxygen consumption rates. Cardiac stroke volume was almost temperature-independent. Through changes in heart rate, cardiac output supported oxygen demand within the thermal window whereas at low and high temperature extremes heart rate declined. The comparison between southern and central populations suggests the adaptation of southern larvae to a colder temperature regime, with higher cardiac outputs due to increased cardiac stroke volumes, larger body sizes but similar body composition as indicated by similar C:N ratios. This limited but clear differentiation of thermal windows between populations allows the species to widen its biogeographical range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-invasive quantitative assessment of the right ventricular anatomical and functional parameters is a challenging task. We present a semi-automatic approach for right ventricle (RV) segmentation from 4D MR images in two variants, which differ in the amount of user interaction. The method consists of three main phases: First, foreground and background markers are generated from the user input. Next, an over-segmented region image is obtained applying a watershed transform. Finally, these regions are merged using 4D graph-cuts with an intensity based boundary term. For the first variant the user outlines the inside of the RV wall in a few end-diastole slices, for the second two marker pixels serve as starting point for a statistical atlas application. Results were obtained by blind evaluation on 16 testing 4D MR volumes. They prove our method to be robust against markers location and place it favourably in the ranks of existing approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: O principal propósito do estudo foi pesquisar a disfunção ventricular esquerda subclínica em pacientes com lúpus eritematoso sistêmico juvenil (LESJ) através da técnica de speckle-tracking bidimensional. Foi investigada ainda uma possível correlação entre o comprometimento da deformação miocárdica e o SLEDAI-2K (Systemic Lupus Erithematosus Disease Activity Index 2000), bem como a presença de fatores de risco cardiovascular, tanto tradicionais como ligados à doença. Métodos: 50 pacientes assintomáticos do ponto de vista cardiovascular e 50 controles saudáveis (14,74 vs. 14,82 anos, p=0.83) foram avaliados pelo ecocardiograma convencional e pelo speckle-tracking bidimensional. Resultados: Apesar da fração de ejeção normal, os pacientes apresentaram redução de todos os parâmetros de deformação miocárdica longitudinal e radial, quando comparados aos controles: strain de pico sistólico longitudinal [-20,3 (-11 a -26) vs. -22 (-17,8 a -30.4) %, p < 0,0001], strain rate de pico sistólico longitudinal [-1,19 ± 0,21 vs. -1,3 ± 0,25 s-1, p=0,0005], strain rate longitudinal na diástole precoce [1,7 (0,99 a 2,95) vs. 2 (1,08 a 3,00) s-1 , p=0,0034], strain de pico sistólico radial [33,09 ± 8,6 vs. 44,36 ± 8,72%, p < 0,0001], strain rate de pico sistólico radial [1,98 ± 0,53 vs. 2,49 ± 0,68 s-1, p < 0,0001] e strain rate radial na diástole precoce [-2,31 ± 0,88 vs. -2,75 ± 0,97 s-1, p=0,02]. O strain de pico sistólico circunferencial [-23,67 ± 3,46 vs. - 24,6 ± 2,86%, p=0,43] e o strain rate circunferencial na diástole precoce [2 (0,88 a 3,4) vs. 1,99 (1,19 a 3,7) s-1, p=0,88] foram semelhantes em pacientes e controles. Apenas o strain rate de pico sistólico circunferencial [-1,5 ± 0,3 vs. -1,6 ± 0,3 s-1, p=0,036] mostrou-se reduzido no LESJ. Uma correlação negativa foi identificada entre o strain de pico sistólico longitudinal e o SLEDAI-2K (r = - 0,52; p < 0,0001) e também o número de fatores de risco cardiovascular por paciente (r = -0,32, p=0,024). Conclusões: Foi evidenciada disfunção sistólica e diastólica subclínica de ventrículo esquerdo no LESJ através da técnica de speckle-tracking bidimensional. A atividade da doença e a exposição aos fatores de risco cardiovascular provavelmente contribuíram para o comprometimento da deformação miocárdica nesses pacientes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 ( n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 mul) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. P-31-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background-Obesity is associated with heart failure, but an effect of weight, independent of comorbidities, on cardiac structure and function is not well established. We sought whether body mass index (BMI) and insulin levels were associated with subclinical myocardial disturbances. Methods and Results-Transthoracic echocardiography, myocardial Doppler-derived systolic (sm) and early diastolic velocity ( em), strain and strain rate imaging and tissue characterization with cyclic variation (CVIB), and calibrated integrated backscatter (cIB) were obtained in 109 overweight or obese subjects and 33 referents (BMI35) and the referent patients (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Specific treatments targeting the pathophysiology of hypertensive heart disease are lacking. As aldosterone has been implicated in the genesis of myocardial fibrosis, hypertrophy, and dysfunction, we sought to determine the effects of aldosterone antagonism on myocardial function in hypertensive patients with suspected diastolic heart failure by using sensitive quantitative echocardiographic techniques in a randomized, double-blinded, placebo-controlled study. Methods and Results - Thirty medically treated ambulatory hypertensive patients (19 women, age 62 +/- 6 years) with exertional dyspnea, ejection fraction >50%, and diastolic dysfunction (E/A 250m/sec) and without ischemia were randomized to spironolactone 25 mg/d or placebo for 6 months. Patients were overweight (31 +/- 5 kg/m(2)) with reduced treadmill exercise capacity (6.7 +/- 2.1 METS). Long-axis strain rate (SR), peak systolic strain, and cyclic variation of integrated backscatter (CVIB) were averaged from 6 walls in 3 standard apical views. Mean 24-hour ambulatory blood pressure at baseline (133 +/- 17/80 +/- 7mm Hg) did not change in either group. Values for SR, peak systolic strain, and CVIB were similar between groups at baseline and remained unchanged with placebo. Spironolactone therapy was associated with increases in SR (baseline: -1.57 +/- 0.46 s(-1) versus 6-months: -1.91 +/- 0.36 s(-1), P < 0.01), peak systolic strain (-20.3 &PLUSMN; 5.0% versus -26.9 &PLUSMN; 4.3%, P < 0.001), and CVIB (7.4 +/- 1.7dB versus 8.6 +/- 1.7 dB, P = 0.08). Each parameter was significantly greater in the spironolactone group compared with placebo at 6 months (P = 0.05, P = 0.02, and P = 0.02, respectively), and the increases remained significant after adjusting for baseline differences. The increase in strain was independent of changes in blood pressure with intervention. The spironolactone group also exhibited reduction in posterior wall thickness (P = 0.04) and a trend to reduced left atrial area (P = 0.09). Conclusions - Aldosterone antagonism improves myocardial function in hypertensive heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^