938 resultados para DIAMETER
Resumo:
This study concerns the wrinkling performance of thin membranes for use as novel reflectors in space-based telescopes. We introduce small-scale experiments for inducing and interrogating wrinkling patterns in at membranes, and we capture these details computationally by performing a range of finite element analysis. The overall aim is to assess the sophistication of modelling, to verify the feasibility of a small-diameter reector concept proposed in accompanying work. © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. The uplift displacement of an underground structure in liquefiable soil deposit can be affected by the buried depth and size of the structure. Dynamic centrifuge tests have been carried out to investigate the influence of these factors by measuring the uplift displacement of shallow model circular structures. Ratios for the buried depth and diameter effects of the structure are introduced to compare the uplift displacement in different soil and earthquake conditions. With the depth effect and diameter effect ratios, the uplift displacement of a buoyant structure in liquefiable soil can also be estimated based on performance of similar structures in comparable soil condition and subjected to a similar earthquake event. © 2012 Elsevier Ltd.
Resumo:
A circular-type magnetic flux pump (CTMFP) device was built to study the flux dynamics on a 2-inch-diameter YBCO thin film. This CTMFP is composed of two CTMFP coils, with each CTMFP coil containing concentric three-phase windings and a dc winding. We connected the three-phase windings to the output of a commercial inverter. By changing the output frequency of the inverter, the sweeping speed of the circular-shaped travelling magnetic wave can be changed. The connection of the phase coils follows the forward consequence, so that the circular-shaped travelling magnetic wave travels inward to the center. The output frequency f was changed from f = 0.01 to 1000.0 Hz. The YBCO sample was sandwiched between the two CTMFP coils to experience the circular-shaped travelling magnetic wave. It was found that the increase of the flux density in the center of the film is independent of the sweeping frequency. In high frequency f = 1000.0Hz, even if the waveform had changed a lot, the increment is still the same as in low frequencies. © 2012 IEEE.
Resumo:
We provide experimental evidence for a vortex migration phenomenon in YBa2Cu3O7-δ (YBCO) thin film caused by travelling magnetic wave. The experiment is carried out on a 2 in. diameter YBCO thin film with a circular-type magnetic flux pump. We found that the travelling wave helps the vortices migrate into the centre of the sample: after the zero-field cooling process, the increase of the flux density in the centre is four times larger than the amplitude of the travelling wave. The reason for this massive vortex migration is probably due to the magnetic stress variation caused by the travelling wave: the magnetic stress increases locally in the crest region while decreases locally in the trough region, which could help the vortices to move locally. A comparison shows that the magnetization by standing wave can be easily predicted by Bean's model while travelling wave causes vortex migration generally much larger than the prediction of Bean's model. It is possible that travelling magnetic wave can be an effective way to magnetize a type II superconductor in considering this unusual vortex dynamics. © 2013 AIP Publishing LLC.
Resumo:
We analyze the relationship between the average wall number (N) and the diameter (d) for carbon nanotubes (CNTs) grown by chemical vapour deposition. It is found that N depends linearly on d for diameters in the range of 2.5-10 nm, while single wall nanotubes predominate for diameters under about 2.1 nm. The linear relationship is found to depend somewhat on the growth conditions. It is also verified that the mean diameter depends on the diameter of the originating catalyst nanoparticle, and thus on the initial catalyst thickness where a thin film catalyst is used. This simplifies the characterisation of CNTs by electron microscopy. We also find a linear relationship between nanotube diameter and initial catalyst film thickness. © 2013 AIP Publishing LLC.
Resumo:
We present a method for producing dense Active Appearance Models (AAMs), suitable for video-realistic synthesis. To this end we estimate a joint alignment of all training images using a set of pairwise registrations and ensure that these pairwise registrations are only calculated between similar images. This is achieved by defining a graph on the image set whose edge weights correspond to registration errors and computing a bounded diameter minimum spanning tree (BDMST). Dense optical flow is used to compute pairwise registration and we introduce a flow refinement method to align small scale texture. Once registration between training images has been established we propose a method to add vertices to the AAM in a way that minimises error between the observed flow fields and a flow field interpolated between the AAM mesh points. We demonstrate a significant improvement in model compactness using the proposed method and show it dealing with cases that are problematic for current state-of-the-art approaches.
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
Exact solutions of Maxwell's equations describing the lightwave through 3-layer-structured cylindrical waveguide are obtained and the mode field diameter and nonlinear coefficient of air-core nanowires (ACNWs) are numerically calculated. The simulation results show that ACNWs offer some unique optical properties, such as tight field confining ability and extremely high nonlinearity. At a certain wavelength and air core radius, we optimize the waveguide design to maximize the nonlinear coefficient and minimize the mode field diameter. Our results show that the ACNWs may be powerful potential tools for novel micro-photonic devices in the near future.
Resumo:
The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.