949 resultados para DEHYDROGENASE ENZYMES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional basis of diabetes-mellitus to a certain extent, can be elucidated by studying diabetes-induced changes in metabolic enzymes. Malate dehydrogenase (MDH), is an enzyme directly involved in glucose metabolism. The kinetic parameters of MDH and its purified cytosolic isozyme, S-MDH, have been studied in the liver of streptozotocin- diabetic rats; also the potential of the leaf extract of A. marmelose as an was investigated. The Km of the liver enzyme increased significantly, in both crude and purified preparations in the diabetic state when compared to Lhe respective controls. Insulin as well as leaf- •extract treatment of the diabetic rats brought about a reversal of K. values to near normal. Vmax of purified S-MDH was significantly higher in the diabetic state when compared to the control. Insulin and leaf extract treatment did not reverse this change. Since MDH is an important enzyme in glucose metabolism, the variation in its quantitative and qualitative nature may contribute to the pathological status of diabetes. The fact that leaf extract of A. marmelose was found to be as effective as insulin in restoration of blood glucose and body weight to normal levels, the use of A. marmelose as potential hypoglycemic agent is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1x), trained 3 days per week (TRE3x) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3x. PYC enhancement was even higher in TRE5x (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to beta-cell surviving rather than insulin secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmaniasis and trypanosomiasis are major causes of morbidity and mortality in both tropical and subtropical regions of the world. The current available drugs are limited, ineffective, and require long treatment regimens. Due to the high dependence of trypanosomatids on glycolysis as a source of energy, some glycolytic enzymes have been identified as attractive targets for drug design. In the present work, classical Two-Dimensional Quantitative Structure -Activity Relationships (2D QSAR) and Hologram QSAR (HQSAR) studies were performed on a series of adenosine derivatives as inhibitors of Leishmania mexicana Glyceraldehyde-3-Phosphate Dehydrogenase (LmGAPDH). Significant correlation coefficients (classical QSAR, r(2)=0.83 and q(2) =0.81; HQSAR, r(2)=0.91 and q(2) =0.86) were obtained for the 56 training set compounds, indicating the potential of the models for untested compounds. The models were then externally validated using a test set of 14 structurally related compounds and the predicted values were in good agreement with the experimental results (classical QSAR, r(pred)(2) = 0.94; HQSAR, r(pred)(2) = 0.92).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudaram-se as alterações de atividade das enzimas musculares creatino quinase (CK), lactato desidrogenase (LDH) e aspartato aminotransferase (AST) em um grupo de cavalos que utilizados em provas de enduro de 70 e 100km de distância, em cinco competições. Os valores (U/l) basais (antes da largada) foram 245,13±9,84 para CK, 496,61±14,76 para LDH e 328,95±8,65 para AST. Todas as atividades das enzimas decresceram no primeiro momento das provas (~30km). Valores de pico, significativamente diferentes, foram alcançados para CK (413,59±50,75) imediatamente após 70km de distância; 24 horas após para LDH (628,61±33,30); e 48 horas após as provas para AST (389,89±16,96). A monitoração do período de recuperação revelou diferente comportamento entre as concentrações enzimáticas com CK retornando aos valores basais 24 horas pós-provas (279,61 ± 23,05). LDH e AST retornaram aos valores basais, 72 horas pós-provas (505,25±33,78 e 359,35±24,90, respectivamente). Os dados obtidos revelaram diferentes alterações na concentração de enzimas musculares de cavalos de enduro, diretamente relacionadas com a duração do esforço.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor), Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase) and glutamate dehydrogenase (GDH). In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN) and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp.) ad libitum. The treatments consisted of control (no supplementation), supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1) and supplementation with protein (albumin). In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we investigate the possible toxicity of vanadyl sulfate (VOSO4), a compound capable of reducing hyperglycemia, on the following serum enzymes of diabetic young rats: alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LD) and creatine kinase (CK), as well as its effects on serum lipids. We find that at a concentration of 1 mg/mL VOSO4 has no toxic effect on the liver and muscles of diabetics young rats. These findings suggest that VOSO4 may be an alternative to insulin in the near future, due to its low cost, low toxicity and ready availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a single bacterial pathogen, Mycobacterium tuberculosis. The reemergence of TB as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, the proliferation of multi-drug-resistant strains (MDR-TB) and, more recently, of extensively drug resistant isolates (XDR-TB) have created a need for the development of new antimycobacterial agents. Amongst the several proteins and/or enzymes to be studied as potential targets to develop novel drugs against M. tuberculosis, the enzymes of the shikimate pathway are attractive targets because they are essential in algae, higher plants, bacteria, and fungi, but absent from mammals. The mycobacterial shikimate pathway leads to the biosynthesis of chorismate, which is a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Here we report the structural studies by homology modeling and circular dichroism spectroscopy of the shikimate dehydrogenase from M. tuberculosis (MtSDH), which catalyses the fourth step of the shikimate pathway. Our structural models show that the MtSDH has similar structure to other shikimate dehydrogenase structures previously reported either in presence or absence of NADP, despite the low amino acid sequence identity. The circular dichroism spectra corroborate the secondary structure content observed in the MtSDH models developed. The enzyme was stable up to 50 degrees C presenting a cooperative unfolding profile with the midpoint of the unfolding temperature value of similar to 63-64 degrees C, as observed in the unfolding experiment followed by circular dichroism. Our MtSDH structural models and circular dichroism data showed small conformational changes induced by NADP binding. We hope that the data presented here will assist the rational design of antitubercular agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol dehydrogenases (ADHs) are oxidoreductases present in animal tissues, plants, and microorganisms. These enzymes attract major scientific interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in synthesis, thanks to their broad substrate specificity and stereoselectivity. In the present study, the standardization of the activity of the alcohol dehydrogenase from baker's yeast was accomplished, and the pH and temperature stability showed, that the enzyme presented a high stability to pH 6.0-7.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The assays of ethanol (detection range 1-5 mM or 4.6 x 10(-2) to 23.0 x 10(-2) g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 7.2%. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as 'moonlighting'proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitratelyase, malatesynthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.