129 resultados para DECAPOD
Resumo:
Mode of access: Internet.
Resumo:
Published by permission of the secretary of the Smithsonian institution and of the United States commissioner of fisheries.
Resumo:
The decapod crustacean assemblages from unconsolidated seabed areas located near rocky shores in the Ubatuba region on the south-east coast of Brazil were analysed by investigating the abundance, richness, diversity and dominance of species. The relationships of the sediment and bottom-water temperature to total species abundance, richness and diversity were also evaluated. Monthly samples were taken from January 1998 through December 1999 at sites in Ubatumirim and Mar Virado. At each locality, three areas were defined as either 'exposed', 'sheltered' or 'island'. The highest species abundance was found in the sheltered area of Ubatumirim and the exposed area of Mar Virado, and during autumn. At Ubatumirim, the highest richness occurred in the exposed area and the highest diversity near the island. At Mar Virado, the highest richness and diversity were found near the island. Autumn and winter collections yielded the highest richness but the lowest diversity. The higher diversities, which were measured near the islands and during spring and summer, were consequences of the greater evenness of the data. The areas with the highest diversity also had the most heterogeneous sediment composition, thus reinforcing the hypothesis that areas with more complex substrata support more diverse faunas.
Resumo:
Settlement rate may not reflect larval supply to coastal waters in different marine invertebrates and demersal fishes. The importance of near-shore oceanography and behaviour of late larval stages may be underestimated. The present study conducted neustonic sampling over station grids and along full-length transects at two embayments in south-eastern Brazil to (1) compare diurnal and nocturnal occurrence of most frequent decapod stages to assess their vertical movements, (2) describe the formation of larval patches and (3) measure competence of crab megalopae according to their distance to recruitment grounds. Several shrimp species apparently undergo a diel vertical migration, swimming crab megalopae showed no vertical movements and megalopae of the intertidal crab Pachygrapsus transversus revealed a reversed vertical migration. During the day, crab megalopae aggregated in convergence zones just below surface slicks. These larvae consisted of advanced, pre-moult stages, at both mid-bay and near-shore patches. Competence, measured as the time to metamorphosis in captivity, was similar between larval patches within each taxon. Yet, subtidal portunids moulted faster to juveniles than intertidal grapsids, possibly because they were closer to settlement grounds. Megalopae of Pachygrapsus from benthic collectors moulted faster than those from bay areas. These results suggest that alternative vertical migration patterns of late megalopae favour onshore transport, and actual competence takes place very close to suitable substrates, where larvae may remain for days before settlement. Lack of correlation between larval supply and settlement for Pachygrapsus suggests that biological processes, besides onshore transport, may play an important role in determining settlement success of coastal crabs.
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl-] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
The parasites of some decapod crustaceans are known to cause sterilisation of their hosts, and can thus have an important impact on the population dynamics of infested species. Blue swimmer crabs (Portunus pelagicus) collected in three areas around Moreton Bay, Australia were examined for the presence of epizoic barnacles in their branchial chambers and on their carapace. Of the 952 crabs inspected 92% were infested with Octolasmis spp. The mean number of barnacles (predominantly Octolasmis warwickii) per carapace and gill chamber (mainly O. angulata) were 2.35 and 71.1, respectively. Barnacle infestation of gills was found to differ significantly by area, season and sex with the deeper offshore areas exhibiting the highest number of barnacles. The distribution within the hosts showed barnacles were more likely to be distributed in areas closer to the inhalant aperture. Highest abundances were found on the proximal surface of the hypobranchial side of gills 3, 4 and 5. Host moult stage and parasitism by Sacculina granifera were also found to affect the abundance of epizoic barnacles in some areas.
Resumo:
Serial Block-Face Scanning Electron Microscopy (SBF-SEM) was used in this study to examine the ultrastructural morphology of Penaeus monodon spermatozoa. SBF-SEM provided a large dataset of sequential electron-microscopic-level images that facilitated comprehensive ultrastructural observations and three-dimensional reconstructions of the sperm cell. Reconstruction divulged a nuclear region of the spermatophoral spermatozoon filled with decondensed chromatin but with two apparent levels of packaging density. In addition, the nuclear region contained, not only numerous filamentous chromatin elements with dense microregions, but also large centrally gathered granular masses. Analysis of the sperm cytoplasm revealed the presence of degenerated mitochondria and membrane-less dense granules. A large electron-lucent vesicle and "arch-like" structures were apparent in the subacrosomal area, and an acrosomal core was found in the acrosomal vesicle. The spermatozoal spike arose from the inner membrane of the acrosomal vesicle, which was slightly bulbous in the middle region of the acrosomal vesicle, but then extended distally into a broad dense plate and to a sharp point proximally. This study has demonstrated that SBF-SEM is a powerful technique for the 3D ultrastructural reconstruction of prawn spermatozoa, that will no doubt be informative for further studies of sperm assessment, reproductive pathology and the spermiocladistics of penaeid prawns, and other decapod crustaceans. J. Morphol., 2016. (c) 2016 Wiley Periodicals, Inc.
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
Ghost shrimp and mud shrimp in the decapod infraorder Thalassinidea are ecologically important members of many benthic intertidal and shallow subtidal infaunal communities, largely due to the sediment filtration and mixing that result from their burrowing and feeding behavior. These activities considerably modify their immediate environment and have made these cryptic animals extremely interesting to scientists in terms of their behavior, ecology, and classification. Over 20 years ago, seven species of thalassinideans were known from the South Atlantic Bight (Cape Hatteras, NC to Cape Canaveral, FL). During this study, the examination of extensive collections from the National Museum of Natural History (NMNH), the Southeastern Regional Taxonomic Center (SERTC), and regional institutions, resulted in the identification of 14 species of thalassinideans currently known to occur within this region. The family Axiidae is represented by three species: Axius armatus, Calaxius jenneri, and Paraxiopsis gracilimana; the Callianassidae by six: Biffarius biformis, B. cf. fragilis, Callichirus major, Cheramus marginatus, Gilvossius setimanus, and Necallianassa berylae; the Calocarididae by two: Calocaris templemani and Acanthaxius hirsutimanus; and the families Laomediidae, Thomassiniidae, and Upogebiidae are each represented by one: Naushonia crangonoides, Crosniera wennerae, and Upogebia affinis, respectively. An illustrated key is presented for species level identification and supplemental notes on the ecology, distribution, and taxonomy of the species are provided.(PDF file contains 38 pages.)
Resumo:
The paper deals with the decapod crustacean larvae likely to be found in fresh and brackish waters in tropical west Africa. It summarizes results from an ongoing program of describing larvae hatched directly from adults of known species, to provide the identification keys necessary for applied research on nursery grounds, plankton ecology and pollution effects. A preliminary key to stage - 1 larvae is given for approximately 40 species. In includes all the genera, and nearly all the species, known to produce larvae in fresh and low-salinity waters. The common species of higher salinity waters are also included
Resumo:
In this work the taxonomy of the Brachyura Decapod Crustacea from fthe shelfwaters of the Province of Buenos Aires, Argentina (South Atlantic Ocean) is described, with particular reference to the biology and zoogeography. The material and methods are described and various zoogeographical problems are considered. A total of 25 species were encountered, and each one is briefly described together with its ecological and biological data. In many cases the geographical distribution has been extgended. Keys are given for the identification of the more common Brachyura from Argentina, as also for the sub-divisions of the Brachyura, including ffamilies, subfamilies and genera. The so-called "cangrejal" community (community composed of semiaquatic crabs) of the river Salado was studied, which was composed of Chasmagnathus granulata crabs. The species Uca uruguayensis formed the outer limit of the "cangrejal" community.
Resumo:
The warm season is the abundance period of the planktonic larval stages of Decapod Crustacea and of Lucifer faxonii in Ivoirian waters. Two or three maxima occur each year during the enrichments interrupting the warm and oligotropic season: February (small upwellings), June - some years - (first rains) and September - November (flood of rivers, end of cold season). Vertical distribution follows seasonal variations and varies little among the taxons. In a general way, Decapod larvae and Lucifer inhabit superficial layers in cold season and sink down during the warm season. It allows them to follow the maximum of primary production. Lucifer faxonii is breeding almost the year long. Breeds succede at rate of 3,7 weeks approximately.
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
The gut contents of Sardina pilchardus specimens captured in Izmir Bay were examined in order to determine their feeding regimes. Of the 365 stomachs examined, 321 (87.95%) contained food and 44 (12.05%) were empty. Analysis of gut contents verified that S. pilchardus feeds on zooplankton. The most important group in the diet of S. pilchardus was copepods (79.79%). Decapod crustacean larvae (8.17%) and bivalves (3.18%) were second and third, respectively, in order of importance. The application of analysis of variance to monthly data of numerical percentage, weight percentage, frequency of occurrence and index of relative importance indicated that there was no significant difference between months. Oncaea media was the most dominant species for six months of the year. Euterpina acutifrons, Centropages typicus, Calanoida, Oncaea sp. and Corycaeus sp. were the most dominant for March, April, May, September, October and December.
Resumo:
Hydrographical and biological parameters of Thana Creek and Bombay Harbour were studied to assess the prevailing water quality. Zooplankton samples were collected from various stations during January 1975 to July 1975. The qualitative distribution of zooplankton was found to be very irregular and fluctuating. Copepods were the dominant taxa followed by lucifers, chaetognaths, decapod larvae, ctenophores, hydromedusae, fish larvae and polychaetes. To a certain extent the distribution of zooplankton is affected by variation in salinity during different seasons, also along the length of the creek. Pronounced effect of pollution on zooplankton biomass was also observed.