953 resultados para DATA QUALITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot full all user needs or cover all concepts of data quality. In this paper we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specification on data quality, and propose an integrated model for data quality in the eld of Earth observation. We also propose a practical mechanism for applying the integrated quality information model to large number of datasets through metadata inheritance. While our data quality management approach is in the domain of Earth observation, we believe the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

National estimates of the prevalence of child abuse-related injuries are obtained from a variety of sectors including welfare, justice, and health resulting in inconsistent estimates across sectors. The International Classification of Diseases (ICD) is used as the international standard for categorising health data and aggregating data for statistical purposes, though there has been limited validation of the quality, completeness or concordance of these data with other sectors. This research study examined the quality of documentation and coding of child abuse recorded in hospital records in Queensland and the concordance of these data with child welfare records. A retrospective medical record review was used to examine the clinical documentation of over 1000 hospitalised injured children from 20 hospitals in Queensland. A data linkage methodology was used to link these records with records in the child welfare database. Cases were sampled from three sub-groups according to the presence of target ICD codes: Definite abuse, Possible abuse, unintentional injury. Less than 2% of cases coded as being unintentional were recoded after review as being possible abuse, and only 5% of cases coded as possible abuse cases were reclassified as unintentional, though there was greater variation in the classification of cases as definite abuse compared to possible abuse. Concordance of health data with child welfare data varied across patient subgroups. This study will inform the development of strategies to improve the quality, consistency and concordance of information between health and welfare agencies to ensure adequate system responses to children at risk of abuse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes the development of a robust and novel prototype to address the data quality problems that relate to the dimension of outlier data. It thoroughly investigates the associated problems with regards to detecting, assessing and determining the severity of the problem of outlier data; and proposes granule-mining based alternative techniques to significantly improve the effectiveness of mining and assessing outlier data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Health Information Exchange (HIE) is an interesting phenomenon. It is a patient centric health and/or medical information management scenario enhanced by integration of Information and Communication Technologies (ICT). While health information systems are repositioning complex system directives, in the wake of the ‘big data’ paradigm, extracting quality information is challenging. It is anticipated that in this talk, ICT enabled healthcare scenarios with big data analytics will be shared. In addition, research and development regarding big data analytics, such as current trends of using these technologies for health care services and critical research challenges when extracting quality of information to improve quality of life will be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This program of research linked police and health data collections to investigate the potential benefits for road safety in terms of enhancing the quality of data. This research has important implications for road safety because, although police collected data has historically underpinned efforts in the area, it is known that many road crashes are not reported to police and that these data lack specific injury severity information. This research shows that data linkage provides a more accurate quantification of the severity and prevalence of road crash injuries which is essential for: prioritising funding; targeting interventions; and estimating the burden and cost of road trauma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Data Quality Campaign (DQC) has been focused since 2005 on advocating for states to build robust state longitudinal data systems (SLDS). While states have made great progress in their data infrastructure, and should continue to emphasize this work, t data systems alone will not improve outcomes. It is time for both DQC and states to focus on building capacity to use the information that these systems are producing at every level – from classrooms to state houses. To impact system performance and student achievement, the ingrained culture must be replaced with one that focuses on data use for continuous improvement. The effective use of data to inform decisions, provide transparency, improve the measurement of outcomes, and fuel continuous improvement will not come to fruition unless there is a system wide focus on building capacity around the collection, analysis, dissemination, and use of this data, including through research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the number of data sources publishing their data on the Web of Data is growing, we are experiencing an immense growth of the Linked Open Data cloud. The lack of control on the published sources, which could be untrustworthy or unreliable, along with their dynamic nature that often invalidates links and causes conflicts or other discrepancies, could lead to poor quality data. In order to judge data quality, a number of quality indicators have been proposed, coupled with quality metrics that quantify the “quality level” of a dataset. In addition to the above, some approaches address how to improve the quality of the datasets through a repair process that focuses on how to correct invalidities caused by constraint violations by either removing or adding triples. In this paper we argue that provenance is a critical factor that should be taken into account during repairs to ensure that the most reliable data is kept. Based on this idea, we propose quality metrics that take into account provenance and evaluate their applicability as repair guidelines in a particular data fusion setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and purpose Survey data quality is a combination of the representativeness of the sample, the accuracy and precision of measurements, data processing and management with several subcomponents in each. The purpose of this paper is to show how, in the final risk factor surveys of the WHO MONICA Project, information on data quality were obtained, quantified, and used in the analysis. Methods and results In the WHO MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) Project, the information about the data quality components was documented in retrospective quality assessment reports. On the basis of the documented information and the survey data, the quality of each data component was assessed and summarized using quality scores. The quality scores were used in sensitivity testing of the results both by excluding populations with low quality scores and by weighting the data by its quality scores. Conclusions Detailed documentation of all survey procedures with standardized protocols, training, and quality control are steps towards optimizing data quality. Quantifying data quality is a further step. Methods used in the WHO MONICA Project could be adopted to improve quality in other health surveys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Participatory sensing enables collection, processing, dissemination and analysis of environmental sensory data by ordinary citizens, through mobile devices. Researchers have recognized the potential of participatory sensing and attempted applying it to many areas. However, participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data quality has become a significant issue. This study proposes using reputation management to classify the gathered data and provide useful information for campaign organizers and data analysts to facilitate their decisions.