958 resultados para D. Fracture
Resumo:
Osteoporotic fracture (OF) is one of the major causes of morbidity and mortality in industrialized countries. Switzerland is among the countries with the greatest risk. Our aim was (1) to calculate the FRAX(®) in a selected Swiss population the day before the occurrence of an OF and (2) to compare the results with the proposed Swiss FRAX(®) thresholds. The Swiss Association Against Osteoporosis proposed guidelines for the treatment of osteoporosis based on age-dependent thresholds. To identify a population at a very high risk of osteoporotic fracture, we included all consecutive patients in the active OF pathway cohort from the Lausanne University Hospital, Switzerland. FRAX(®) was calculated with the available data the day before the actual OF. People with a FRAX(®) body mass index (BMI) or a FRAX(®) (bone mineral density) BMD lower than the Swiss thresholds were not considered at high risk. Two-hundred thirty-seven patients were included with a mean age of 77.2 years, and 80 % were female. Major types of fracture included hip (58 %) and proximal humerus (25 %) fractures. Mean FRAX(®) BMI values were 28.0, 10.0, 13.0, 26.0, and 37.0 % for age groups 50-59, 60-69, 70-79, and 80-89 years old, respectively. Fifty percent of the population was not considered at high risk by the FRAX(®) BMI. FRAX(®) BMD was available for 95 patients, and 45 % had a T score < -2.5 standard deviation. Only 30 % of patients with a normal or osteopenic BMD were classified at high risk by FRAX(®) BMD. The current proposed Swiss thresholds were not able to classify at high risk in 50 to 70 % of the studied population the day before a major OF.
Resumo:
We found that lumbar spine texture analysis using trabecular bone score (TBS) is a risk factor for MOF and a risk factor for death in a retrospective cohort study from a large clinical registry for the province of Manitoba, Canada. INTRODUCTION: FRAX® estimates the 10-year probability of major osteoporotic fracture (MOF) using clinical risk factors and femoral neck bone mineral density (BMD). Trabecular bone score (TBS), derived from texture in the spine dual X-ray absorptiometry (DXA) image, is related to bone microarchitecture and fracture risk independently of BMD. Our objective was to determine whether TBS provides information on MOF probability beyond that provided by the FRAX variables. METHODS: We included 33,352 women aged 40-100 years (mean 63 years) with baseline DXA measurements of lumbar spine TBS and femoral neck BMD. The association between TBS, the FRAX variables, and the risk of MOF or death was examined using an extension of the Poisson regression model. RESULTS: During the mean of 4.7 years, 1,754 women died and 1,872 sustained one or more MOF. For each standard deviation reduction in TBS, there was a 36 % increase in MOF risk (HR 1.36, 95 % CI 1.30-1.42, p < 0.001) and a 32 % increase in death (HR 1.32, 95 % CI 1.26-1.39, p < 0.001). When adjusted for significant clinical risk factors and femoral neck BMD, lumbar spine TBS was still a significant predictor of MOF (HR 1.18, 95 % CI 1.12-1.23) and death (HR 1.20, 95 % CI 1.14-1.26). Models for estimating MOF probability, accounting for competing mortality, showed that low TBS (10th percentile) increased risk by 1.5-1.6-fold compared with high TBS (90th percentile) across a broad range of ages and femoral neck T-scores. CONCLUSIONS: Lumbar spine TBS is able to predict incident MOF independent of FRAX clinical risk factors and femoral neck BMD even after accounting for the increased death hazard.
Resumo:
BACKGROUND: The AO comprehensive pediatric longbone fracture classification system describes the localization and morphology of fractures, and considers severity in 3 categories: (1) simple, (2) wedge, and (3) complex. We evaluated the reliability and accuracy of surgeons in using this rating system. MATERIAL AND METHODS: In a first validation phase, 5 experienced pediatric (orthopedic) surgeons reviewed radiographs of 267 prospectively collected pediatric fractures (agreement study A). In a second study (B), 70 surgeons of various levels of experience in 15 clinics classified 275 fractures via internet. Simple fractures comprised about 90%, 99% and 100% of diaphyseal (D), metaphyseal (M), and epiphyseal (E) fractures, respectively. RESULTS: Kappa coefficients for severity coding in D fractures were 0.82 and 0.51 in studies A and B, respectively. The median accuracy of surgeons in classifying simple fractures was above 97% in both studies but was lower, 85% (46-100), for wedge or complex D fractures. INTERPRETATION: While reliability and accuracy estimates were satisfactory as a whole, the ratings of some individual surgeons were inadequate. Our findings suggest that the classification of fracture severity in children should be done in only two categories that distinguish between simple and wedge/complex fractures.
Resumo:
Emergency medicine is a cross-discipline characterized by its ability to identify critical threats, as well as its ability to prioritize investigations and identify appropriate treatments. Recent publications have been published on upper gastrointestinal haemorrhage, elbow fracture or brain haemorrhage, to optimize and standardize the investigations. In parallel, conditions such as cardiopulmonary arrest, spontaneous pneumothorax or stroke, benefit from recent therapeutic advances. However, emergency physicians and primary care physicians must remain critical of the numerous medical publications, as evidenced by the contradictory results concerning the interaction between proton pump inhibitors and clopidogrel.
Resumo:
At the age of 50, a woman has a lifetime risk of more than 40% to present a vertebral fracture. More than 60% of vertebral fractures remain undiagnosed. As a consequence it is of major importance to develop screening strategies to detect these fractures. Vertebral fracture assessment (VFA) by DXA allows one to detect vertebral fracture from T4 to L4 using DXA devices, while performing also during the same visit the bone mineral density measurement. Such an approach should improve the evaluation of fracture risk and therapeutic indication. Compared to the standard X-ray assessment, VFA highly enables to detect moderate or severe vertebral fractures below T6.
Resumo:
The use of areal bone mineral density (aBMD) for fracture prediction may be enhanced by considering bone microarchitectural deterioration. Trabecular bone score (TBS) helped in redefining a significant subset of non-osteoporotic women as a higher risk group. INTRODUCTION: TBS is an index of bone microarchitecture. Our goal was to assess the ability of TBS to predict incident fracture. METHODS: TBS was assessed in 560 postmenopausal women from the Os des Femmes de Lyon cohort, who had a lumbar spine (LS) DXA scan (QDR 4500A, Hologic) between years 2000 and 2001. During a mean follow-up of 7.8 ± 1.3 years, 94 women sustained 112 fragility fractures. RESULTS: At the time of baseline DXA scan, women with incident fracture were significantly older (70 ± 9 vs. 65 ± 8 years) and had a lower LS_aBMD and LS_TBS (both -0.4SD, p < 0.001) than women without fracture. The magnitude of fracture prediction was similar for LS_aBMD and LS_TBS (odds ratio [95 % confidence interval] = 1.4 [1.2;1.7] and 1.6 [1.2;2.0]). After adjustment for age and prevalent fracture, LS_TBS remained predictive of an increased risk of fracture. Yet, its addition to age, prevalent fracture, and LS_aBMD did not reach the level of significance to improve the fracture prediction. When using the WHO classification, 39 % of fractures occurred in osteoporotic women, 46 % in osteopenic women, and 15 % in women with T-score > -1. Thirty-seven percent of fractures occurred in the lowest quartile of LS_TBS, regardless of BMD. Moreover, 35 % of fractures that occurred in osteopenic women were classified below this LS_TBS threshold. CONCLUSION: In conclusion, LS_aBMD and LS_TBS predicted fractures equally well. In our cohort, the addition of LS_TBS to age and LS_aBMD added only limited information on fracture risk prediction. However, using the lowest quartile of LS_TBS helped in redefining a significant subset of non-osteoporotic women as a higher risk group which is important for patient management.
Resumo:
Several recent studies suggest that obesity may be a risk factor for fracture. The aim of this study was to investigate the association between body mass index (BMI) and future fracture risk at different skeletal sites. In prospective cohorts from more than 25 countries, baseline data on BMI were available in 398,610 women with an average age of 63 (range, 20-105) years and follow up of 2.2 million person-years during which 30,280 osteoporotic fractures (6457 hip fractures) occurred. Femoral neck BMD was measured in 108,267 of these women. Obesity (BMI ≥ 30 kg/m(2) ) was present in 22%. A majority of osteoporotic fractures (81%) and hip fractures (87%) arose in non-obese women. Compared to a BMI of 25 kg/m(2) , the hazard ratio (HR) for osteoporotic fracture at a BMI of 35 kg/m(2) was 0.87 (95% confidence interval [CI], 0.85-0.90). When adjusted for bone mineral density (BMD), however, the same comparison showed that the HR for osteoporotic fracture was increased (HR, 1.16; 95% CI, 1.09-1.23). Low BMI is a risk factor for hip and all osteoporotic fracture, but is a protective factor for lower leg fracture, whereas high BMI is a risk factor for upper arm (humerus and elbow) fracture. When adjusted for BMD, low BMI remained a risk factor for hip fracture but was protective for osteoporotic fracture, tibia and fibula fracture, distal forearm fracture, and upper arm fracture. When adjusted for BMD, high BMI remained a risk factor for upper arm fracture but was also a risk factor for all osteoporotic fractures. The association between BMI and fracture risk is complex, differs across skeletal sites, and is modified by the interaction between BMI and BMD. At a population level, high BMI remains a protective factor for most sites of fragility fracture. The contribution of increasing population rates of obesity to apparent decreases in fracture rates should be explored. © 2014 American Society for Bone and Mineral Research.
Resumo:
RESUME Fractures du fémur chez les enfants d'âge préscolaire. Expérience avec l'enclouage centromédullaire élastique stable chez 72 enfants Introduction L'immobilisation plâtrée est le traitement le plus fréquemment utilisé pour traiter les fractures du fémur chez les enfants d'âge préscolaire de moins de 6 ans. L'enclouage centromédullaire élastique stable (ECMES), qui a remplacé les immobilisations plâtrées chez les enfants d'âge scolaire, est une alternative qui n'a jamais été étudiée spécifiquement dans la tranche d'âge préscolaire. Matériel et Méthode Nous avons réalisé une étude rétrospective de tous les cas de fractures du fémur chez l'enfant de moins de 6 ans traitées par ECMES dans le service de chirurgie pédiatrique du Centre Hospitalier Universitaire Vaudois et de l'Hôpital de l'Enfance de Lausanne sur une période de 15 ans. Résultats Parmi les 210 fractures du fémur traitées par ECMES entre le 1.1.1988 et le 31.12.2003, 74 fractures du fémur ont été identifiées chez 73 enfants âgés de 1.5 à 5.9 ans. Ces fractures étaient sous-trochantériennes (n=5), diaphysaires (n=64, dont 5 ouvertes), ou métaphysaires discales (n=4). Le type de fracture était transverse (n=35, dont 2 ouvertes), oblique (n=28, dont 3 ouvertes) au spiroïde (n=11). Quatre fractures étaient comminutives. Le temps opératoire moyen était de 56,9 minutes (limites entre 20 et 155 min.) pour les enfants ne présentant pas d'autre pathologie chirurgicale. Le séjour hospitalier moyen était de 9.1 jours (limites entre 1 et 46 jours) pour tous les enfants n'ayant pas de pathologie associée. Chez les enfants sans lésion ou pathologie associée, la première mise en charge s'est effectuée en moyenne au 14,1 ème jour post-opératoire (limites entre 1 et 42ème jour) alors que la première mobilisation a eu lieu en moyenne dès le 2,7ème jour post-opératoire (limites entre le 1 et le 14ème jour). 64 enfants ont été suivis à long terme avec un recul moyen de. 36,8 mois (limites entre 4 et 124 mois). Nous avons relevés 6 enfants avec une inégalité de longueur de plus d'un centimètre, alors que nous n'avons jamais constaté de défaut de rotation. Durant le 11 premières années de l'étude, 9 enfants ont dû être réopérés pour raccourcissement secondaire de broches extériorisées ou douloureuses sous la peau. Aucun problème de broche n'a été observé après introduction d'une nouvelle pince à couper. 2 réductions de fracture se sont faites à foyer ouvert. Une infection localisée transitoire du point de ponction d'une broche a été notée, sans ostéite associée. Discussion L' ECMES chez le petit enfant est techniquement réalisable sans véritable limite inférieure d'âge. Il favorise la mobilisation et la charge précoces. Les complications sont avant tout en rapport avec la technique et peuvent être évitées. Les résultats sont au moins aussi bons et meilleurs sur certains points que ceux publiés en utilisant les immobilisations. En outre ce traitement évite une longue hospitalisation. Conclusions L'ECMES peut être appliqué aux enfants de moins de 6 ans avec les mêmes bénéfices que ceux observés pour les plus grands, sans en augmenter la morbidité. La limite inférieure d'âge reste à déterminer. Un suivi à long terme s'impose pour vérifier l'absence d'inégalité de longueur des membres inférieurs.
Resumo:
Given the significant impact the use of glucocorticoids can have on fracture risk independent of bone density, their use has been incorporated as one of the clinical risk factors for calculating the 10-year fracture risk in the World Health Organization's Fracture Risk Assessment Tool (FRAX(®)). Like the other clinical risk factors, the use of glucocorticoids is included as a dichotomous variable with use of steroids defined as past or present exposure of 3 months or more of use of a daily dose of 5 mg or more of prednisolone or equivalent. The purpose of this report is to give clinicians guidance on adjustments which should be made to the 10-year risk based on the dose, duration of use and mode of delivery of glucocorticoids preparations. A subcommittee of the International Society for Clinical Densitometry and International Osteoporosis Foundation joint Position Development Conference presented its findings to an expert panel and the following recommendations were selected. 1) There is a dose relationship between glucocorticoid use of greater than 3 months and fracture risk. The average dose exposure captured within FRAX(®) is likely to be a prednisone dose of 2.5-7.5 mg/day or its equivalent. Fracture probability is under-estimated when prednisone dose is greater than 7.5 mg/day and is over-estimated when the prednisone dose is less than 2.5 mg/day. 2) Frequent intermittent use of higher doses of glucocorticoids increases fracture risk. Because of the variability in dose and dosing schedule, quantification of this risk is not possible. 3) High dose inhaled glucocorticoids may be a risk factor for fracture. FRAX(®) may underestimate fracture probability in users of high dose inhaled glucocorticoids. 4) Appropriate glucocorticoid replacement in individuals with adrenal insufficiency has not been found to increase fracture risk. In such patients, use of glucocorticoids should not be included in FRAX(®) calculations.
Resumo:
OsteoLaus is a cohort of 1400 women 50 to 80 years living in Lausanne, Switzerland. Clinical risk factors for osteoporosis, bone ultrasound of the heel, lumbar spine and hip bone mineral density (BMD), assessment of vertebral fracture by DXA, and microarchitecture evaluation by TBS (Trabecular Bone Score) will be recorded. TBS is a new parameter obtained after a re-analysis of a DXA exam. TBS is correlated with parameters of microarchitecture. His reproducibility is good. TBS give an added diagnostic value to BMD, and predict osteoporotic fracture (partially) independently to BMD. The position of TBS in clinical routine in complement to BMD and clinical risk factors will be evaluated in the OsteoLaus cohort.
Resumo:
Osteoporosis and atherosclerosis seem to be epidemiologically correlated. Several medical conditions are risk factors for both osteoporosis and atheromatosis (i.e. age, diabetes, end stage renal disease, sedentarity, smoking), but a common pathogenic link may be present beyond this. The burden of cardiovascular events and of osteoporotic fracture is considerable for the health care system in term of costs and resources. However, both diseases are rarely managed together. This article is a review of the recent studies in this new field.
Resumo:
BACKGROUND: Fractures in men are a major health issue, and data on the antifracture efficacy of therapies for osteoporosis in men are limited. We studied the effect of zoledronic acid on fracture risk among men with osteoporosis. METHODS: In this multicenter, double-blind, placebo-controlled trial, we randomly assigned 1199 men with primary or hypogonadism-associated osteoporosis who were 50 to 85 years of age to receive an intravenous infusion of zoledronic acid (5 mg) or placebo at baseline and at 12 months. Participants received daily calcium and vitamin D supplementation. The primary end point was the proportion of participants with one or more new morphometric vertebral fractures over a period of 24 months. RESULTS: The rate of any new morphometric vertebral fracture was 1.6% in the zoledronic acid group and 4.9% in the placebo group over the 24-month period, representing a 67% risk reduction with zoledronic acid (relative risk, 0.33; 95% confidence interval, 0.16 to 0.70; P=0.002). As compared with men who received placebo, men who received zoledronic acid had fewer moderate-to-severe vertebral fractures (P=0.03) and less height loss (P=0.002). Fewer participants who received zoledronic acid had clinical vertebral or nonvertebral fractures, although this difference did not reach significance because of the small number of fractures. Bone mineral density was higher and bone-turnover markers were lower in the men who received zoledronic acid (P<0.05 for both comparisons). Results were similar in men with low serum levels of total testosterone. The zoledronic acid and placebo groups did not differ significantly with respect to the incidence of death (2.6% and 2.9%, respectively) or serious adverse events (25.3% and 25.2%). CONCLUSIONS: Zoledronic acid treatment was associated with a significantly reduced risk of vertebral fracture among men with osteoporosis. (Funded by Novartis Pharma; ClinicalTrials.gov number, NCT00439647.).
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.