971 resultados para Cyanobacteria -- Biodegradation
Resumo:
The paper records the first occurrence of the genus Microcrocis P. Richter (Chroococcales, Cyanobacteria), represented by M. pulchella (Buell) Geitler, in Brazil. The species was found in two zones, one with freshwater and the other with brackish water, of a coastal lagoon of Rio Grande do Sul State (31°15-31°30 S and 50°54-51°09 W). Comparison between M. pulchella and its most closely related species is presented. Up to now this species had occurrence records limited to freshwater systems in temperate regions. Its presence in a subtropical coastal lagoon from southernmost Brazil, either in fresh or in brackish water, broadened the knowledge of the distribution area of M. pulchella.
Resumo:
Considering the great ecological and sanitary importance of the cyanobacteria and the need of detailed information about these organisms in Brazilian water bodies, the present study aims at contributing towards the knowledge of the cyanobacterial flora of five reservoirs belonging to the upper Tietê Basin, São Paulo: Billings, Guarapiranga, Jundiaí, Pirapora, Ponte Nova and Taiaçupeba. In the past several years, these reservoirs have been submitted to severe environmental deterioration and have repeatedly presented cyanobacterial blooms, including those of toxic species. The samples were collected between 1997 and 2003 either with plankton net (20 µm mesh) or van Dorn's bottle, and preserved with lugol solution or formaldehyde. Some species were isolated and maintained in culture. Forty-eight species of cyanobacteria were identified, with predominance of the order Chroococcales (58%), followed by the orders Oscillatoriales (21%) and Nostocales (21%). Among the 48 studied species, 17 (35%) were considered potentially toxic. The occurrence and biodiversity of the cyanobacteria in each reservoir depend on the environmental conditions. Among the five water bodies, Billings Reservoir presented the most adequate situation for the development of a greater number of species (34), probably due to its high pH values (around 8). Pirapora Reservoir on the other hand, with highest conductivity (445.0 µS cm-1) and lowest Secchi depth values (0.2 m), presented the lowest cyanobacterial biodiversity (14 species).
Resumo:
The paper proposed Cyanoaggregatum brasiliense, a new genus and species from the plankton of a subtropical brackish coastal lagoon from Rio Grande do Sul State, South Brazil. It differs from all other members of Chroococcales by its characteristic arrangement of cells in irregular groups distributed in a single, flat or slightly curved layer, on irregular rows, slightly distant from each other, forming a mosaic-like pattern slightly below the surface of the mucilaginous colonial envelope. The cell division in one plane perpendicular to the long axis and the lack of pseudo-filaments indicate its classification in the family Synechococcaceae, sub-family Aphanothecoideae. The general characteristics, the diagnostic criteria and the taxonomic position are discussed, and a comparison between Cyanoaggregatum and its most closely related genera is presented. Physical and chemical data on the studied lagoon and geographical distribution are presented.
Resumo:
The recently described scytonematoid cyanobacterial genus Brasilonema is known mainly from tropical and subtropical rain forests (Mata Atlântica) of southeastern Brazil, where it occurs in aerophytic wooden, stony and iron substrates. This genus was defined according to both molecular and morphological criteria. The type species B. bromeliae was described from the specialized habitat: it grows in phytothelmes, epiphytic on both living and died leaves within the rosettes of large bromeliad plants slightly above or in the zone of the water level. The genus Brasilonema is evidently widely distributed in coastal forests of São Paulo State, where it occurs also in remarkable diversity. According to our results, this genus currently comprises seven taxa, which are distinct by different morphology and ecological characteristics.
Resumo:
Considering the great ecological importance of the cyanobacteria and the need for more detailed information about these organisms in Brazilian waters, this paper provides taxonomic information about the unicellular cyanobacteria flora in lagoon systems along the coastal plains of Rio Grande do Sul State. Sampling was performed in different freshwater bodies along the eastern (Casamento Lake area) and western (near the city of Tapes) banks of the Patos Lagoon (30º40' S-30º10' S and 50º30' W-51º30' W). The samples were collected once in the rainy season and once in the dry season (from May 2003 to December 2003) using a plankton net (25 µm mesh) in pelagic and littoral zones, and by squeezing the submerged parts of aquatic macrophytes. Thirty one species belonging to the families Synechoccocaceae (7 taxa), Merismopediaceae (12 taxa), Chamaesiphonaceae (1 taxon), Microcystaceae (4) and Chroococcaceae (7 taxa) were identified. Among these species, five are reported for the first time in Rio Grande do Sul State: Chamaesiphon amethystinus (Rostafinski) Lemmermann, Chroococcus minimus (Keissler) Lemmermann, Coelomoron pusillum (Van Goor) Komárek, Coelosphaerium kuetzingeanum Naegeli, and Cyanodictyon tubiforme Cronberg.
Resumo:
Cyanobacteria are common in aquatic environments but are also well-adapted to terrestrial habitats where they are represented by a diversified flora. The present study aimed to contribute to our taxonomic knowledge of terrestrial cyanobacteria by way of a floristic survey of the main components of corticolous communities found in seasonal semideciduous forest fragments. Samples of visible growths of Cyanobacteria, algae, and bryophytes found on tree bark were randomly collected and their taxonomies examined. Eighteen species of Cyanobacteria were found belonging to the genera Aphanothece, Chroococcus, Lyngbya, Phormidium, Porphyrosiphon, Hapalosiphon, Hassalia, Nostoc, Scytonema, and Stigonema. Many genera and species observed in the present work have been reported in previous surveys of the aerophytic flora in several regions of the world, although six species were described only on the basis of populations found in the forest fragments studied, which highlights the importance of taxonomic studies of cyanobacteria in these habitats.
Resumo:
The Brazilian Atlantic Rainforest is a highly heterogeneous ecosystem comprising large numbers of tropical and subtropical habitats favorable to the development of cyanobacteria. Studies on cyanobacteria in this ecosystem are still rare, however, especially those involving unicellular and colonial types. The high biodiversity and endemism of this biome has been extremely impacted and fragmented, and less than 10% of its original vegetation cover remains today. We describe here a new species of a colonial cyanobacteria, Lemmermanniella terrestris, found on dry soils in a subtropical region of the Atlantic Rainforest in the municipality of Cananéia in southern São Paulo State, Brazil. This new taxon demonstrated all of the diacritical features of the genus Lemmermanniella but, unlike the other species of the genus, it was growing on the soil surface and not in an aquatic environment. A set of morphological features, including colonies composed of subcolonies, and cell dimensions, shapes and contents distinguish it from other species of the genus. Considering that species of Lemmermanniella are found in very distinct habitats (such as thermal and brackish waters) and that they maintain the same life cycle described for the genus in all of those environments, the morphological structures of the colonies can be used as reliable markers for identifying the genus, and its species differ primarily in relation to the habitats they occupy.
Resumo:
This study describes and illustrates non-heterocytous filamentous cyanobacteria found in lagoon systems on the coastal plains of Rio Grande do Sul State. Collections were carried out in different freshwater bodies along the eastern (Casamento Lake area) and western (Tapes City area) margins of the Patos Lagoon (UTM 461948-6595095 and 542910-6645535) using a plankton net (25 µm mesh) in pelagic and littoral zones as well as by squeezing submerged parts of aquatic macrophytes, during both the rainy and dry seasons, from May to December/2003. Twenty two species belonging to the families Phormidiaceae (eight taxa), Pseudanabaenaceae (seven taxa), Oscillatoriaceae (six taxa), and Spirulinaceae (one taxon) were identified. Among these species, five are reported for the first time from Rio Grande do Sul State: Leptolyngbya cebennensis, Microcoleus subtorulosus, Oscillatoria cf. anguina, O. curviceps and Phormidium formosum.
Resumo:
Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.
Resumo:
Cyanobacteria are well-known for their role in the global production of O2 via photosynthetic water oxidation. However, with the use of light energy, cyanobacteria can also reduce O2. In my thesis work, I have investigated the impact of O2 photoreduction on protection of the photosynthetic apparatus as well as the N2-fixing machinery. Photosynthetic light reactions produce intermediate radicals and reduced electron carriers, which can easily react with O2 to generate various reactive oxygen species. To avoid prolonged reduction of photosynthetic components, cyanobacteria use “electron valves” that dissipate excess electrons from the photosynthetic electron transfer chain in a harmless way. In Synechocystis sp. PCC 6803, flavodiiron proteins Flv1 and Flv3 comprise a powerful electron sink redirecting electrons from the acceptor side of Photosystem I to O2 and reducing it directly to water. In this work, I demonstrate that upon Ci-depletion Flv1/3 can dissipate up to 60% of the electrons delivered from Photosystem II. O2 photoreduction by Flv1/3 was shown to be vital for cyanobacteria in natural aquatic environments and deletion of Flv1/3 was lethal for both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 under fluctuating light conditions. The lethal phenotype observed in the absence of Flv1/3 results from oxidative damage to Photosystem I, which appeared to be a primary target of reactive oxygen species produced upon sudden increases in light intensity. Importantly, cyanobacteria also possess other O2 photoreduction pathways which can protect the photosynthetic apparatus. This study demonstrates that respiratory terminal oxidases are also capable of initiating O2 photoreduction in mutant cells lacking the Flv1/3 proteins and grown under fluctuating light. Photoreduction of O2 by Rubisco was also shown in Ci-depleted cells of the mutants lacking Flv1/3, and thus provided the first evidence for active photorespiratory gas-exchange in cyanobacteria. Nevertheless, and despite the existence of other O2 photoreduction pathways, the Flv1/3 route appears to be the most robust and rapid system of photoprotection. Several groups of cyanobacteria are capable of N2 fixation. Filamentous heterocystous N2- fixing species, such as Anabaena sp. PCC 7120, are able to differentiate specialised cells called heterocysts for this purpose. In contrast to vegetative cells which perform oxygenic photosynthesis, heterocysts maintain a microoxic environment for the proper function of the nitrogenase enzyme, which is extremely sensitive to O2. The genome of Anabaena sp. PCC 7120 harbors two copies of genes encoding Flv1 and Flv3 proteins, designated as “A” and “B” forms. In this thesis work, I demonstrate that Flv1A and Flv3A are expressed only in the vegetative cells of filaments, whilst Flv1B and Flv3B are localized exclusively in heterocysts. I further revealed that the Flv3B protein is most responsible for the photoreduction of O2 in heterocysts, and that this reaction plays an important role in protection of the N2-fixing machinery and thus, the provision of filaments with fixed nitrogen. The function of the Flv1B protein remains to be elucidated; however the involvement of this protein in electron transfer reactions is feasible. Evidence provided in this thesis indicates the presence of a great diversity of O2 photoreduction reactions in cyanobacterial cells. These reactions appear to be crucial for the photoprotection of both photosynthesis and N2 fixation processes in an oxygenic environment.
Resumo:
Harmful algal blooms (HABs) are events caused by the massive proliferation of microscopic, often photosynthetic organisms that inhabit both fresh and marine waters. Although HABs are essentially a natural phenomenon, they now cause worldwide concern. Recent anthropogenic effects, such as climate change and eutrophication via nutrient runoff, can be seen in their increased prevalence and severity. Cyanobacteria and dinoflagellates are often the causative organisms of HABs. In addition to adverse effects caused by the sheer biomass, certain species produce highly potent toxic compounds: hepatotoxic microcystins are produced exclusively by cyanobacteria and neurotoxic saxitoxins, also known as paralytic shellfish toxins (PSTs), by both cyanobacteria and dinoflagellates. Specific biosynthetic genes in the cyanobacterial genomes direct the production of microcystin and paralytic shellfish toxins. Recently also the first paralytic shellfish toxin gene sequences from dinoflagellate genomes have been elucidated. The public health risks presented by HABs are evident, but the monitoring and prediction of toxic events is challenging. Characterization of the genetic background of toxin biosynthesis, including that of microcystins and paralytic shellfish toxins, has made it possible to develop highly sensitive molecular tools which have shown promise in the monitoring and study of potentially toxic microalgae. In this doctoral work, toxin-specific genes were targeted in the developed PCR and qPCR assays for the detection and quantification of potentially toxic cyanobacteria and dinoflagellates in the environment. The correlation between the copy numbers of the toxin biosynthesis genes and toxin production were investigated to assess whether the developed methods could be used to predict toxin concentrations. The nature of the correlation between gene copy numbers and amount of toxin produced varied depending on the targeted gene and the producing organism. The combined mcyB copy numbers of three potentially microcystin-producing cyanobacterial genera showed significant positive correlation to the observed total toxin production. However, the presence of PST-specific sxtA, sxtG, and sxtB genes of cyanobacterial origin was found to be a poor predictor of toxin production in the studied area. Conversely, the dinoflagellate sxtA4 was a good qualitative indicator of a neurotoxic bloom both in the laboratory and in the field, and population densities reflected well the observed toxin concentrations. In conclusion, although the specificity of each potential targeted toxin biosynthesis gene must be assessed individually during method development, the results obtained in this doctoral study support the use of quantitative PCR -based approaches in the monitoring of toxic cyanobacteria and dinoflagellates.
Resumo:
In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.
Resumo:
The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.
Resumo:
La digestion anaérobie est un processus biologique dans lequel un consortium microbien complexe fonctionnant en absence d’oxygène transforme la matière organique en biogaz, principalement en méthane et en dioxyde de carbone. Parmi les substrats organiques, les lipides sont les plus productifs de méthane par rapport aux glucides et aux protéines; mais leur dégradation est très difficile, en raison de leur hydrolyse qui peut être l’étape limitante. Les algues peuvent être une source importante pour la production de méthane à cause de leur contenu en lipides potentiellement élevé. L’objectif de cette étude était, par conséquent, d’évaluer la production en méthane des microalgues en utilisant la technique du BMP (Biochemical méthane Potential) et d’identifier les limites de biodégradion des lipides dans la digestion anaérobie. Le plan expérimental a été divisé en plusieurs étapes: 1) Comparer le potentiel énergétique en méthane des macroalgues par rapport aux microalgues. 2) Faire le criblage de différentes espèces de microalgues d’eau douce et marines afin de comparer leur potentiel en méthane. 3) Déterminer l'impact des prétraitements sur la production de méthane de quelques microalgues ciblées. 4) Identifier les limites de biodégradation des lipides algaux dans la digestion anaérobie, en étudiant les étapes limitantes de la cinétique des lipides et de chacun des acides gras à longues chaines. Les résultats ont montré que les microalgues produisent plus de méthane que les macroalgues. Les BMP des microalgues d'eau douce et marines n'ont montré aucune différence en termes de rendement en méthane. Les résultats des prétraitements ont montré que le prétraitement thermique (microonde) semblait être plus efficace que le prétraitement chimique (alcalin). Les tests de contrôle du BMP faits sur l'huile de palme, l’huile de macadamia et l'huile de poisson ont montré que l'hydrolyse des huiles en glycérol et en acides gras à longues chaines n'était pas l'étape limitante dans la production de méthane. L'ajout de gras dans les échantillons de Phaeodactylum dégraissée a augmenté le rendement de méthane et cette augmentation a été corrélée à la quantité de matières grasses ajoutées.
Resumo:
The main objectives of the present investigation were to evaluate the qualitative and quantitative distribution of natural cyanobacterial population and their ecobiological properties along the Cochin estuary and their application in aquaculture systems as a nutritional supplement due to their nutrient-rich biochemical composition and antioxidant potential. This thesis presents a detailed account of the distribution of cyanobacteria in Cochin estuary, an assessment of physico-chemical parameters and the nutrients of the study site, an evaluation of the effect of physico-chemical parameters on cyanobacterial distribution and abundance, isolation, identification and culturing of cyanobacteria, the biochemical composition an productivity of cyanobacteria, and an evaluation of the potential of the selected cyanobacteria as antioxidants against ethanol induced lipid peroxidation. The pH, salinity and nutritional requirements were optimized for low-cost production of the selected cyanobacterial strains. The present study provides an insight into the distribution, abundance, diversity and ecology of cyanobacteria of Cochin estuary. From the results, it is evident that the ecological conditions of Cochin estuary support a rich cyanobacterial growth.