960 resultados para Cross-lingual conceptual-semantic relations
Resumo:
The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. Hum Brain Mapp 35:429-443, 2014. © 2012 Wiley Periodicals, Inc.
Resumo:
Social tagging evolved in response to a need to tag heterogeneous objects, the automated tagging of which is usually not feasible by current technological means. Social tagging can be used for more flexible competence management within organizations. The profiles of employees can be built in the form of groups of tags, as employees tag each other, based on their familiarity of each other’s expertise. This can serve as a replacement for the more traditional competence management approaches, which usually become outdated due to social and organizational hurdles, and obsolete data. These limitations can be overcome by people tagging, as the information revealed by such tags is usually based on most recent employee interaction and knowledge. Task management as part of personal information management aims at the support of users’ individual task handling. This can include collaborating with other individuals, sharing one’s knowledge, both functional and process-related, and distributing documents and web resources. In this context, Task patterns can be used as templates that collect information and experience around tasks associated to it during run time, facilitating agility. The effective collaboration among contributors necessitates the means to find the appropriate individuals to work with on the task, and this can be made possible by using social tagging to describe individual competencies. The goal of this study is to support finding and tagging people within task management, through the effective exploitation of the work/task context. This involves the utilization of knowledge of the workers’ expertise, nature of the task/task pattern and information available from the documents and web resources attached to the task. Vice versa, task management provides an excellent environment for social tagging due to the task context that already provides suitable tags. The study also aims at assisting users of the task management solution with the collaborative construction of light-weight ontology by inferring semantic relations between tags. The thesis project aims at an implementation of people finding & tagging within the java application for task management that consumes web services, which provide the required ontology for the organization.
Resumo:
Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.
Resumo:
Social tagging has become very popular around the Internet as well as in research. The main idea behind tagging is to allow users to provide metadata to the web content from their perspective to facilitate categorization and retrieval. There are many factors that influence users' tag choice. Many studies have been conducted to reveal these factors by analysing tagging data. This paper uses two theories to identify these factors, namely the semiotics theory and activity theory. The former treats tags as signs and the latter treats tagging as an activity. The paper uses both theories to analyse tagging behaviour by explaining all aspects of a tagging system, including tags, tagging system components and the tagging activity. The theoretical analysis produced a framework that was used to identify a number of factors. These factors can be considered as categories that can be consulted to redirect user tagging choice in order to support particular tagging behaviour, such as cross-lingual tagging.
Resumo:
Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.
Resumo:
This paper presents a proposal for the semantic treatment of ambiguous homographic forms in Brazilian Portuguese, and to offer linguistic strategies for its computational implementation in Systems of Natural Language Processing (SNLP). Pustejovsky's Generative Lexicon was used as a theoretical model. From this model, the Qualia Structure - QS (and the Formal, Telic, Agentive and Constitutive roles) was selected as one of the linguistic and semantic expedients for the achievement of disambiguation of homonym forms. So that analyzed and treated data could be manipulated, we elaborated a Lexical Knowledge Base (LKB) where lexical items are correlated and interconnected by different kinds of semantic relations in the QS and ontological information.
Resumo:
This paper carries out a descriptive study on Portuguese adjectives. Our aim is to describe the semantics of the legal domain adjectives in order to construct an ontology which may improve Information Retrieval Systems. For this, we present an approach based on valency and semantic relations. The ontology proposed here is a first step aiming to build a legal ontology based on top-level concepts. © AEPIA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Linguística e Língua Portuguesa - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Supported by the Functional Discourse Grammar theoretical model, as proposed by Hengeveld (2005), this paper aims to show that the order of modifiers of the Representational Level in spoken Brazilian Portuguese is determined by scope relations according to the layers of property, state-of-affairs and propositional content. This kind of distribution indicates that, far from being free-ordered as suggested by traditional grammarians, modifiers have a preferred position determined by semantic relations that may be only changed for pragmatic and structural reasons.