1000 resultados para Criblage 3-hybride
Resumo:
Subtropical Urban Communities Project Urban design and residential buildings The Centre for Subtropical Design has researched design concepts for livable subtropical neighbourhoods characterised by higher-density, mixed-use, family oriented housing by conducting a design charrette and analysing the proposed designs to evaluate how well these typologies might support economic, environmental and social sustainability. http://www.subtropicaldesign.org.au/index.php?option=com_content&task=view&id=125&Itemid=163 The QUT Team produced designs (Case Study 3) within the research framework of the design charrette.
Resumo:
In the structure of the title compound, the salt C12H10N3O4+ C7H3N2O72-, the cations and the anions are linked by a single N+-H...O(carboxyl) hydrogen bond, the discrete cation-anion unit having no intermolecular associations other than weak cation--anion aromatic ring pi--pi interactions [ring centroid separation, 3.7320(14)A] and a number of weak inter-unit aromatic C-H...O contacts.
Resumo:
The structure of title compound, the anhydrous guanidinium salt, CH6N3+ C7H4NO4- shows a three-dimensional structure in which the guanidinium cation is involved in three cyclic R1/2(6) hydrogen-bonding associations with separate carboxylate O-acceptors. Further peripheral associations include a cyclic R2/1(4)cation--anion interaction, forming inter-linked undulating sheets in the framework structure.
Resumo:
Flinders University and Queensland University of Technology, biofuels research interests cover a broad range of activities. Both institutions are seeking to overcome the twin evils of "peak oil" (Hubbert 1949 & 1956) and "global warming" (IPPC 2007, Stern 2006, Alison 2010), through development of Generation 1, 2 and 3 (Gen-1, 2 & 3) biofuels (Clarke 2008, Clarke 2010). This includes development of parallel Chemical Biorefinery, value-added, co-product chemical technologies, which can underpin the commercial viability of the biofuel industry. Whilst there is a focused effort to develop Gen-2 & 3 biofuels, thus avoiding the socially unacceptable use of food based Gen-1 biofuels, it must also be recognized that as yet, no country in the world has produced sustainable Gen-2 & 3 biofuel on a commercial basis. For example, in 2008 the United States used 38 billion litres (3.5% of total fuel use) of Gen-1 biofuel; in 2009/2010 this will be 47.5 billion litres (4.5% of fuel use) and in 2018 this has been estimated to rise to 96 billion litres (9% of total US fuel use). Brazil in 2008 produced 24.5 billion litres of ethanol, representing 37.3% of the world’s ethanol use for fuel and Europe, in 2008, produced 11.7 billion litres of biofuel (primarily as biodiesel). Compare this to Australia’s miserly biofuel production in 2008/2009 of 180 million litres of ethanol and 75 million litres of biodiesel, which is 0.4% of our fuel consumption! (Clarke, Graiver and Habibie 2010) To assist in the development of better biofuels technologies in the Asian developing regions the Australian Government recently awarded the Materials & BioEnergy Group from Flinders University, in partnership with the Queensland University of Technology, an Australian Leadership Award (ALA) Biofuel Fellowship program to train scientists from Indonesia and India about all facets of advanced biofuel technology.
Resumo:
This guide explains how copyright law applies to Australian government material, how copyright can be managed to facilitate beneficial open access practices by government, how CC licenses can be used to achieve open access to government material, and provides practical step-by-step guidance for agencies and their officers on licensing and use of government copyright materials under CC 3.0 Australia licences.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.