962 resultados para Crepe rubber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model has been developed to predict the erosive wear behaviour of elastomers under conditions of glancing impact by small hard particles. Previous work has shown the erosive wear mechanism of elastomers under these conditions to be similar in nature to that of abrasive wear by a sharp blade. The model presented here was developed from the model of Southern and Thomas for sliding abrasion, by combining their treatment of the growth of surface cracks with a model for particle impact in which the force - displacement relationship for an idealized flat-ended punch on a semi-infinite elastic solid was assumed. In this way an expression for the erosive wear rate was developed, and compared with experimental measurements of wear rate for natural rubber, styrene - butadiene rubber and a highly crosslinked polybutadiene rubber. Good qualitative agreement was found between the predictions of the model and the experimental measurements. The variation of erosion rate with impact velocity, impact angle, particle size, elastic modulus of the material, coefficient of friction and fatigue properties were all well accounted for. Quantitative agreement was less good, and the effects of erosive particle shape could not be accounted for. The reasons for these discrepancies are discussed. © 1992 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal properties and crystallization-behavior of ultrafine fully-vulcanized powdered rubber (UFPR) toughened poly propylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X-ray diffraction (WAXD) measurements. It was found that the fraction of beta-form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model of the chemical kinetics of silicone rubber Vulcanization is developed, with the thermal effects being computed using the increment method, and the hot Vulcanization process estimated with the finite element method. The results show that the reaction heat of rubber vulcanization is important for energy saving, and that a proper curing medium temperature is important when considering both vulcanization efficiency and vulcanizate uniformity. The results also indicate that increases in the forced convective heat transfer coefficient have no significant effect above a certain level. The validity of the numerical model is indirectly proven by comparison with existing data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the quantitative relationship among rubber processing, structure and property, the methodology of the integrated processing-structure-property analysis on rubber in-mold vulcanization is presented, and then the temporal evolution and spatial distribution characteristics of silicone rubber hot processing parameters, crosslinking structure parameters and mechanical property parameters are obtained by means of the finite element method. The present work is helpful for optimizing curing conditions, and then the design of rubber vulcanization processes according to certain requirements can be done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of crosslinking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of acrylic impact modifiers (AIMS) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle-ductile transition of impact-modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 degrees C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle-ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2-341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle-ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle-ductile transition for the PVC/AIM blends.