907 resultados para Crayon drawing.
Resumo:
The crystal transitions of Nylon 11 annealed and drawn at different temperatures (T-d) with different drawing ratios (n) were investigated by wide-angle X-ray diffraction (WAXD). The alpha -form of Nylon Il could be transformed from the delta'-form by annealing at high temperature, The results showed that the crystal transitions of Nylon 11 strongly depended on the thermal history and the conditions of drawing. The delta'-form Nylon Il could he gradually transformed into the alpha -form when it was drawn at high temperature and the alpha -form was only partly transformed into the delta'-form when it was drawn at low temperature. This should be due to the effect of the competition between thermal inducement and drawing inducement. The thermal inducement was favorable to producing the alpha -form, while the drawing inducement was favorable to producing the delta'-form. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new crystal modification induced by strain and denoted as form II exists alongside the dominant form I structure in the uniaxially oriented poly(ether ether ketone) (PEEK) and the related polymers. The crystal structure of form II for PEEK is also found to possess a two-chain orthorhombic packing with unit cell parameters of a equal to 0.475 nm, b equal to 1.060 nm, and c equal to 1.086 nm. More extended and flattened chain conformation of form II relative to that of form I is expected to account for an 8% increase in c-axis dimension, which is attributed to the extensional deformation fixed in situ through strain-induced crystallization during uniaxial drawing. Annealing experiments suggest that form II is thermodynamically metastable and can be transformed into more stable form I by chain relaxation and reorganization at elevated temperature without external tension. This strain-induced polymorphism exists universally in the poly(aryl ether ketone) family. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The crystal structure, morphology and polymorphism induced by uniaxial drawing of poly(ether ether ketone ketone) [PEEKK] have been studied by transmission electron microscopy (TEM), electron diffraction (ED) and wide angle X-ray diffraction (WAXD). On the basis of WAXD and ED patterns,the crystal structure of unoriented PEEKK is determined to have two-chain orthorhombic packing with unit cell parameters of a 0.772 nm, b = 0.600 nm, c = 1.004 nm (form I), A stress-induced crystal modification (form II) is identified and found to possess a two-chain orthorhombic lattice with unit cell dimensions of a = 0.461 nm, b = 1.074 nm, c = 1.080 nm. The 7.5% increase in c-axis dimension for form II is attributed to an overextended chain conformation, arising from extensional deformation during uniaxial drawing and fixed ''in-situ'' through strain-induced crystallization. The average ether-ketone bridge bond angles in form II crystal are determined to be 148.9 degrees by using standard bond lengths. The crystal morphology of PEEKK bears a great similarity to that of PEEK. The crystals grow in the form of spherulites and have the b-axis of unit cell radial. The effects of draw rate on strain-induced crystallization and induction of form II structure are also discussed.
Resumo:
The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.
Resumo:
Crystal structure and polymorphism induced by uniaxial drawing of a poly(aryl ether ketone) [PEDEKmK] prepared from 1,3-bis(4-fluorobenzoyl)benzene and biphenyl-4,4'-diol have been investigated by means of transmission electron microscopy (TEM), electron diffraction (ED), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) techniques. The melting and recrystallization process in the temperature range of 250-260 degrees C, far below the next melting temperature (306 degrees C), was identified and found to be responsible for the remarkable changes in lamellar morphology. Based on WAXD and ED patterns, it was found that crystal structure of isotropic-crystalline PEDEKmK obtained under different crystallization conditions (melt-crystallization, cold-crystallization, solvent-induced crystallization, melting-recrystallization, and crystallization from solution) keeps the same mode of packing, i.e., a two-chain orthorhombic unit cell with the dimensions a = 0.784 nm, b = 0.600 nm, and c = 4.745 nm (form I). A second crystal modification (form II) can be induced by uniaxial drawing above the glass transition temperature, and always coexists with form I. This form also possesses an orthorhombic unit cell but with different dimensions, i.e., a = 0.470 nm, b = 1.054 nm, c = 5.064 nm. The 0.32 nm longer c-axis of form II as compared with form I is attributed to an overextended chain conformation due to the expansion of ether and ketone bridge bond angles during uniaxial drawing. The temperature dependence of WAXD patterns for the drawn PEDEKmK suggests that form II can be transformed into the more stable form I by relaxation of overextended chains and relief of internal stress at elevated temperature in absence of external tension.
Resumo:
Griffiths, M. (2005). Children drawing toy commercials: re-imagining television production features. Visual Communication. 4(1), pp.21-37. RAE2008
Resumo:
Submission on behalf of UCC to the Government Consultation on the White paper on Irish Aid
Resumo:
While people in Catholic parishes in Ireland appear keenly aware of parish boundaries, these understandings are more often oral than cartographic. There is no digital map of all of the Catholic parishes in Ireland. However, the institutional Catholic Church insists that no square kilometre can exist outside of a parish boundary. In this paper, I explain a process whereby the Catholic parishes of Ireland were produced digitally. I will outline some of the technical challenges of digitizing such boundaries. In making these maps, it is not only a question of drawing lines but mapping people’s understanding of their locality. Through an example of one part of the digitisation project, I want to talk about how verifying maps with local people often complicates something which may have at first sight seemed simple. The paper ends on a comparison with how other communities of interest are territorialised in Ireland and elsewhere to draw out some broader theoretical and theological issues of concern.
Resumo:
In order to present visual art as a paradigm for philosophy, Merleau-Ponty investigated the creative processes of artists whose work corresponded closely with his philosophical ideas. His essays on art are widely valued for emphasising process over product, and for challenging the primacy of the written word in all spheres of human expression. While it is clear that he initially favoured painting, Merleau-Ponty began to develop a much deeper understanding of the complexities of how art is made in his late work in parallel with his advancement of a new ontology. Although his ontology remains unfinished and only exists as working notes and a manuscript entitled The Visible and Invisible, Merleau-Ponty had begun to appreciate the fundamental role drawing plays in the making of art and the creation of a language of expression that is as vital as the written or spoken word. Through an examination of Merleau-Ponty’s unfinished manuscript and working notes my thesis will investigate his working methods and use of materials and also explore how he processed his ideas by using my own art practice as the basis of my research. This research will take the form of an inquiry into how the unfinished and incomplete nature of text and artworks, while they are still ‘works in progress’, can often reveal the more human and carnal components of creative processes. Applying my experience as a practitioner and a teacher in an art school, I focus on the significance of drawing practice for Merleau-Ponty’s later work, in order to rebalance an overemphasis on painting in the literature. Understanding the differences between these two art forms, and how they are taught, can offer an alternative engagement with Merleau-Ponty’s later work and his struggle to find a language to express his developing new ontology. In addition, by re-reading his work through the language of drawing, I believe we gain new insights which reaffirm Merleau-Ponty's relevance to contemporary art making and aesthetics.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
The author's approach to teaching an integrative unit to a small group of master’s level Applied Statistics students in 2000-2001 is described. Details of the various activities such as data analysis, reading and discussion of papers, and training in consultancy skills are given, as also are details of the assessment. The students’ and lecturer’s views of the unit are discussed.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
Theory and research suggest that Internet identification may account for some of the gender divide in Internet use. Internet identification is a type of domain identification, and is inherently bound with images of those who use the Internet, a domain traditionally conceived as masculine. Combining the “draw an Internet user” test with an Internet identification scale, this study tests two hypotheses: participants drawing gender-concordant images will (i) identify with and (ii) use the Internet more than those drawing gender-discordant images. Participants were 371 students (121 males, 250 females) from three universities in the United Kingdom and Australia. The need to challenge masculinized images of the Internet is discussed.