962 resultados para Cortex visuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pairfed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs, that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior experience with the elevated plus maze (EPM) increases the avoidance of rodents to the open arms and impairs the anxiolytic-like effects of benzodiazepines on the traditional behaviors evaluated upon re-exposure to the maze, a phenomenon known as one-trial tolerance. Risk assessment behaviors are also sensitive to benzodiazepines. During re-exposure to the maze, these behaviors reinstate the information-processing initiated during the first experience, and the detection of danger generates stronger open-arm avoidance. The present study investigated whether the benzodiazepine midazolam alters risk assessment behaviors and Fos protein distribution associated with test and retest sessions in the EPM. Naive or maze-experienced Wistar rats received either saline or midazolam (0.5 mg/kg i.p.) and were subjected to the EPM. Midazolam caused the usual effects on exploratory behavior, increasing exploratory activity of naive rats in the open arms and producing no effects on these conventional measures in rats re-exposed to the maze. Risk assessment behaviors, however, were sensitive to the benzodiazepine during both sessions, indicating anxiolytic-like effects of the drug in both conditions. Fos immunohistochemistry showed that midazolam injections were associated with a distinct pattern of action when administered before the test or retest session, and the anterior cingulate cortex, area 1 (Cg1), was the only structure targeted by the benzodiazepine in both situations. Bilateral infusions of midazolam into the Cg1 replicated the behavioral effects of the drug injected systemically, suggesting that this area is critically involved in the anxiolytic-like effects of benzodiazepines, although the behavioral strategy adopted by the animals appears to depend on the previous knowledge of the threatening environment. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor I consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Independent brain circuits appear to underlie different forms of conditioned fear, depending on the type of conditioning used, such as a context or explicit cue paired with footshocks. Several clinical reports have associated damage to the medial temporal lobe (MTL) with retrograde amnesia. Although a number of studies have elucidated the neural circuits underlying conditioned fear, the involvement of MTL components in the aversive conditioning paradigm is still unclear. To address this issue, we assessed freezing responses and Fos protein expression in subregions of the rhinal cortex and ventral hippocampus of rats following exposure to a context, light or tone previously paired with footshock (Experiment 1). A comparable degree of freezing was observed in the three types of conditioned fear, but with distinct patterns of Fos distribution. The groups exposed to cued fear conditioning did not show changes in Fos expression, whereas the group subjected to contextual fear conditioning showed selective activation of the ectorhinal (Ect), perirhinal (Per), and entorhinal (Ent) cortices, with no changes in the ventral hippocampus. We then examined the effects of the benzodiazepine midazolam injected bilaterally into these three rhinal subregions in the expression of contextual fear conditioning (Experiment 2). Midazolam administration into the Ect, Per, and Ent reduced freezing responses. These findings suggest that contextual and explicit stimuli endowed with aversive properties through conditioning recruit distinct brain areas, and the rhinal cortex appears to be critical for storing context-, but not explicit cue-footshock, associations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we analyzed how high-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor hand area (M1-Hand) shapes anticipatory motor activity in frontal areas as indexed by the contingent negative variation (CNV). Eight right-handed volunteers received real or sham 5 Hz rTMS at an intensity of 90% resting motorthreshold (1500 stimuli per session). Real but not sham rTMS to left M1-Hand induced a site-specific increase in amplitude of the late component of the CNV at the electrode C3 overlaying the site of stimulation. The increase in pre-movement activity in the stimulated cortex may reflect an increase in facilitatory drive from connected motor areas, enhanced responsiveness of the stimulated cortex to these inputs or both. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological inattention following parietal damage causes perceptual impairments for visual stimuli in the contralesional hemifield. Here we used functional magnetic resonance imaging (fMRI) to examine visual cortex activity in parietal patients as they performed a spatial attention task. Righthemisphere patients and healthy controls viewed counterphasing checkerboards in which coloured targets appeared briefly within the contralesional and ipsilesional hemifields. In separate fMRI runs participants focused their attention covertiy on the left or right hemifield, or on both hemifields concurrentiy. They were required to detect coloured targets that appeared briefly within the attended hemifield(s), and to withhold responses to distractor stimuli. Neural activit}' was significantly attenuated in early visual areas within the damaged hemisphere. Crucially, although attention significantiy modulated early visual activit}' within the intact (left) hemisphere, there was relatively littie modulation of activity within the affected hemisphere. Our findings suggest that parietal lesions alter early cortical responses to contralesional visual inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.