978 resultados para Correction of resistivity
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Vignettes and self-reported work disability in the United States: Correction of report heterogeneity
Resumo:
Subjective measures of health tend to suffer from bias given by reporting heterogeneity. however, some methodologies are used to correct the bias in order to compare self-assessed health for respondents with different sociodemographic characteristics. One of the methods to correct this is the hierarchical ordered probit (hopit), which includes rates of vignettes -hypothetical individuals with a fixed health state- and where two assumptions have to be fulfilled, vignette equivalence and response consistency. this methodology is used for the self-reported work disability for a sample of the united states for 2011. The results show that even though sociodemographic variables influence rating scales, adjusting for this does not change their effect on work disability, which is only influenced by income. the inclusion of variables related with ethnicity or place of birth does not influence the true work disability. however, when only one of them is excluded, it becomes significant and affects the true level of work disability as well as income.
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Resumo:
A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
The temporal variability of the atmosphere through which radio waves pass in the technique of differential radar interferometry can seriously limit the accuracy with which the method can measure surface motion. A forward, nested mesoscale model of the atmosphere can be used to simulate the variable water content along the radar path and the resultant phase delays. Using this approach we demonstrate how to correct an interferogram of Mount Etna in Sicily associated with an eruption in 2004-5. The regional mesoscale model (Unified Model) used to simulate the atmosphere at higher resolutions consists of four nested domains increasing in resolution (12, 4, 1, 0.3 km), sitting within the analysis version of a global numerical model that is used to initiate the simulation. Using the high resolution 3D model output we compute the surface pressure, temperature and the water vapour, liquid and solid water contents, enabling the dominant hydrostatic and wet delays to be calculated at specific times corresponding to the acquisition of the radar data. We can also simulate the second-order delay effects due to liquid water and ice.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
Distalization of maxillary molars is indicated for correction of Class II dental malocclusion and for space gain in cases of space deficiency. The ideal treatment with an intraoral fixed appliance for molar distalization should fulfill the following requirements: patient compliance; acceptable esthetics; comfort; minimum anterior anchor loss (as evidenced by inclination of incisors); bodily movement of the molars to avoid undesirable effects and unstable outcomes; and minimum time required during sessions for placement and activations. The purpose of this paper was to present an alternative treatment for space recovery in the area of the maxillary right second premolar when there has been significant mesial movement of the permanent maxillary right first molar. We used a modified appliance that allows unilateral molar distalization in cases of unilateral tooth/arch size discrepancy using the opposite side as anchor, thus reducing the mesialization of the anterior teeth. (Pediatr Dent 2008;30:334-41) Received August 17, 2006 / Last Revision October 17, 2007 / Revision Accepted October 17, 2007
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat`s calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect`s region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect`s area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat`s calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.
Resumo:
No Rio Grande do Sul (RS), muitas áreas sob plantio direto apresentam elevada saturação por Al e baixa saturação por bases na camada de 0,10-0,20 m (subsuperfície), e isso pode diminuir a produção de grãos de culturas anuais. O objetivo do presente trabalho foi avaliar se a ocorrência de alta saturação por Al e baixa saturação por bases em subsuperfície (0,10-0,20 m), no plantio direto, pode representar um ambiente restritivo para a produção de culturas, bem como avaliar os modos de incorporação de calcário na correção da acidez do solo em subsuperfície. Para isso, foi realizado um experimento com os cultivos de soja (2005/ 2006), milho (2006/2007), trigo (2007) e soja (2007/2008), em um Latossolo Vermelho distrófico típico (Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 2006) de textura franco arenosa, há quatro anos sob plantio direto, no município de Tupanciretã (RS). Os seis tratamentos foram: sem revolvimento com ou sem calcário; lavração com ou sem calcário; e escarificação com ou sem calcário. Aos 24 meses após a aplicação dos tratamentos e nas camadas de 0-0,05, 0,05-0,10, 0,10-0,15, 0,15-0,20 e 0,20-0,30 m, foram avaliados os valores de pH-H2O, saturação por Al e por bases. Avaliou-se a produtividade de soja (2005/2006), milho (2006/2007), trigo (2007) e soja (2007/2008). A acidez do solo em subsuperfície não alterou a produtividade das culturas quando as propriedades de acidez na camada de 0-0,10 m estavam em níveis em que não se recomenda a aplicação de calcário, segundo a CQFSRS/SC (2004). A incorporação de calcário com aração foi o modo mais eficiente de corrigir a acidez em profundidade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)