983 resultados para Convective boundary layer
Resumo:
The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.
Resumo:
The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness
Resumo:
The unsteadely laminar incompressible second-order boundary-layer flow at the stagnation point of a three-dimensional body has been studied for both nodal and saddle point regions. The effects of mass transfer and Prandtl number have been taken into account. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It has been found that the parameter characterizing the unsteadiness in the velocity of the free stream, the nature of the stagnation point, the mass transfer and Prandtl number strongly affect the second-order skin friction and heat transfer. The overall skin friction becomes less due to second-order effects but the heat transfer has the opposite behaviour. For large injection, the second-order skin-friction and heat-transfer results prevail over the first-order boundary layer results whereas for the case of large suction the behaviour is just the opposite.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
Abstract is not available.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter λ which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when λ is small, whereas the effect of the dissipation parameter is more pronounced when λ is comparatively large.
Resumo:
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.
Resumo:
Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.