872 resultados para Control-Display Systems.
Resumo:
Fuzzy logic control (FLC) systems have been applied as an effective control system in various fields, including vibration control of structures. The advantage of this approach is its inherent robustness and ability to handle non‐linearities and uncertainties in structural behavior and loading. The study evaluates the three‐dimensional benchmark control problem for a seismically excited highway bridge using an ANFIS driven hydraulic actuators. An ANN based training strategy that considers both velocity and acceleration feedback together with a fuzzy logic rule base is developed. Present study needs only 4 accelerometers and 4 fuzzy rule bases to determine the control force, instead of 8 accelerometers and 4 displacement transducers used in the benchmark study problem. The results obtained are better than that obtained from the benchmark control algorithm.
Resumo:
In this paper, we present Slack Stealing Job Admission Control (SSJAC)---a methodology for scheduling periodic firm-deadline tasks with variable resource requirements, subject to controllable Quality of Service (QoS) constraints. In a system that uses Rate Monotonic Scheduling, SSJAC augments the slack stealing algorithm of Thuel et al with an admission control policy to manage the variability in the resource requirements of the periodic tasks. This enables SSJAC to take advantage of the 31\% of utilization that RMS cannot use, as well as any utilization unclaimed by jobs that are not admitted into the system. Using SSJAC, each task in the system is assigned a resource utilization threshold that guarantees the minimal acceptable QoS for that task (expressed as an upper bound on the rate of missed deadlines). Job admission control is used to ensure that (1) only those jobs that will complete by their deadlines are admitted, and (2) tasks do not interfere with each other, thus a job can only monopolize the slack in the system, but not the time guaranteed to jobs of other tasks. We have evaluated SSJAC against RMS and Statistical RMS (SRMS). Ignoring overhead issues, SSJAC consistently provides better performance than RMS in overload, and, in certain conditions, better performance than SRMS. In addition, to evaluate optimality of SSJAC in an absolute sense, we have characterized the performance of SSJAC by comparing it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.
Resumo:
This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.
Resumo:
This paper presents a new packet scheduling scheme called agent-based WFQ to control and maintain QoS parameters in virtual private networks (VPNs) within the confines of adaptive networks. Future networks are expected to be open heterogeneous environments consisting of more than one network operator. In this adaptive environment, agents act on behalf of users or third-party operators to obtain the best service for their clients and maintain those services through the modification of the scheduling scheme in routers and switches spanning the VPN. In agent-based WFQ, an agent on the router monitors the accumulated queuing delay for each service. In order to control and to keep the end-to-end delay within the bounds, the weights for services are adjusted dynamically by agents on the routers spanning the VPN. If there is an increase or decrease in queuing delay of a service, an agent on a downstream router informs the upstream routers to adjust the weights of their queues. This keeps the end-to-end delay of services within the specified bounds and offers better QoS compared to VPNs using static WFQ. This paper also describes the algorithm for agent-based WFQ, and presents simulation results. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Treasure et al. (2004) recently proposed a new sub space-monitoring technique, based on the N4SID algorithm, within the multivariate statistical process control framework. This dynamic-monitoring method requires considerably fewer variables to be analysed when compared with dynamic principal component analysis (PCA). The contribution charts and variable reconstruction, traditionally employed for static PCA, are analysed in a dynamic context. The contribution charts and variable reconstruction may be affected by the ratio of the number of retained components to the total number of analysed variables. Particular problems arise if this ratio is large and a new reconstruction chart is introduced to overcome these. The utility of such a dynamic contribution chart and variable reconstruction is shown in a simulation and by application to industrial data from a distillation unit.