906 resultados para Contraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination tasks) we report reaction time asymmetries between expansion and contraction. Power functions were fitted to the data. While an exponent of 0.5 accounted for the expansion data better, a value of unity yielded the best fit for the contraction data. Instead of interpreting these differences as corresponding to different higher order motion detectors, we regard these findings as reflecting the fact that expansion and contraction tap two distinct psychophysical input channels underlying the processing of fast and slow velocities respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive) circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1) in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3) in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constant facilitation of responses evoked in the earthworm muscle contraction generator neurons by responses evoked in the neurons of its peripheral nervous system was demonstrated. It is based on the proposal that these two responses are bifurcations of an afferent response evoked by the same peripheral mechanical stimulus but converging again on this central neuron. A single-peaked generator response without facilitation was demonstrated by sectioning the afferent route of the peripheral facilitatory modulatory response, or conditioning response (CR). The multipeaked response could be restored by restimulating the sectioned modulatory neuron with an intracellular substitutive conditioning stimulus (SCS). These multi-peaked responses were proposed to be the result of reverberating the original single peaked unconditioned response (UR) through a parallel (P) neuronal circuit which receives the facilitation of the peripheral modulatory neuron. This peripheral modulatory neuron was named "Peri-Kästchen" (PK) neuron because it has about 20 peripheral processes distributed on the surface of a Kästchen of longitudinal muscle cells on the body wall of this preparation as revealed by the Lucifer Yellow-CH-filling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive) neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI) were used as the control or unconditioned responses (UR). Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US) to a train of short (0.1 s) hyperpolarizing electrical substitutive conditioning stimuli (SCS) in the Peri-Kästchen (PK) neuron were measured in four parameters, i.e., peak numbers (N) and amplitude ()averaged from 120 responses, sum of these amplitudes (SAMP) and the highest peak amplitude (V) over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US), but not backward (US-SCS), association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI) for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta) is the predominant isoform in the heart. During excitation-contraction coupling (ECC) CaMKII phosphorylates several Ca-handling proteins including ryanodine receptors (RyR), phospholamban, and L-type Ca channels. CaMKII expression and activity have been shown to correlate positively with impaired ejection fraction in the myocardium of patients with heart failure and CaMKII has been proposed to be a possible compensatory mechanism to keep hearts from complete failure. However, in addition to these acute effects on ECC, CaMKII was shown to be involved in hypertrophic signaling, termed excitation-transcription coupling (ETC). Thus, animal models have shown that overexpression of nuclear isoform CaMKIIdeltaB can induce myocyte hypertrophy. Recent study from our laboratory has suggested that transgenic overexpression of the cytosolic isoform CaMKIIdeltaC in mice causes severe heart failure with altered intracellular Ca handling and protein expression leading to reduced sarcoplasmic reticulum (SR) Ca content. Interestingly, the frequency of diastolic spontaneous SR Ca release events (or opening of RyR) was greatly enhanced, demonstrating increased diastolic SR Ca leak. This was attributed to increased CaMKII-dependent RyR phosphorylation, resulting in increased and prolonged openings of RyR since Ca spark frequency could be reduced back to normal levels by CaMKII inhibition. This review focuses on acute and chronic effects of CaMKII in ECC and ETC. In summary, CaMKII overexpression can lead to heart failure and CaMKII-dependent RyR hyperphosphorylation seems to be a novel and important mechanism in ECC due to SR Ca leak which may be important in the pathogenesis of heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A FMRFamide-like neuropeptide with the sequence "DRNFLRF-NH2" was recently isolated from pericardial organs of crayfish (Mercier et aI., Peptides, 14, 137-143, 1993). This neuropeptide, referred to as "DF2'" has already been shown to elicit cardioexcitation and to enhance synaptic transmission at neuromuscular junctions. Possible effects ofDF2 on muscle were investigated using superficial extensor muscles of the abdomen of the crayfish, Procambarus clar/ai. These muscles are of the tonic type and generate slow contractions that affect posture. DF2, at concentrations of 10-8 M or higher, increased muscle tonus and induced spontaneous, rhythmic contractions. These effects were antagonized by 5 rnM Mn2+ but not by lO-7M tetrodotoxin (TTX). Thus, they represent direct actions on muscle cells (rather than effects on motor neurons) and are likely to involve calcium influx. In contrast, deep abdominal extensor muscles, responsible for rapid swimming movements, and superficial flexor muscles do not generate contractions in response to the peptide. 2 Spontaneous contractions were also induced in the superficial extensor muscles by decreasing the temperature to II-13°C. Such contractions were also TTX-insensitive and they were antagonized by adding calcium channel blockers (Mn2+, Cd2+ or Ni2+) or by removing calcium from the bathing solution. This suggests that the spontaneous contractions depend on an influx of calcium from the extracellular solution. N-type and L-type voltage dependent calcium channel blockers did not reduce the effect of the peptide or the spontaneous contractions suggesting that calcium influx is not through N- or L-type calcium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surrounding lipid droplets in skeletal muscle are the perilipin (PLIN2-5) family of proteins, regulating lipid droplet metabolism. During exercise lipid droplets provide fatty acids to the mitochondria for oxidation while increasing their proximity to each other. Whether PLIN3 and PLIN5 associate with mitochondria following contraction has not been examined. To determine whether contraction altered mitochondrial PLIN3 and PLIN5 content, sedentary and endurance trained rats underwent acute contraction. The main outcomes are; 1) mitochondrial PLIN3 content is unaltered while mitochondrial PLIN5 content is increased following an acute contraction 2) mitochondrial PLIN3 content is higher in endurance trained rats when compared to sedentary and mitochondrial PLIN5 content is similar in both conditions 3) only PLIN5 mitochondrial content is increased similarly in both groups following acute contraction. This work highlights the dynamics of these two PLIN proteins, which may have roles not only on the lipid droplet but also on the mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet–mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21;age, 52 days; weight = 317 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10–20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).