983 resultados para Contextual Load Optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parallel computing is now widely used in numerical simulation, particularly for application codes based on finite difference and finite element methods. A popular and successful technique employed to parallelize such codes onto large distributed memory systems is to partition the mesh into sub-domains that are then allocated to processors. The code then executes in parallel, using the SPMD methodology, with message passing for inter-processor interactions. In order to improve the parallel efficiency of an imbalanced structured mesh CFD code, a new dynamic load balancing (DLB) strategy has been developed in which the processor partition range limits of just one of the partitioned dimensions uses non-coincidental limits, as opposed to coincidental limits. The ‘local’ partition limit change allows greater flexibility in obtaining a balanced load distribution, as the workload increase, or decrease, on a processor is no longer restricted by the ‘global’ (coincidental) limit change. The automatic implementation of this generic DLB strategy within an existing parallel code is presented in this chapter, along with some preliminary results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic distributed load balancing algorithm for parallel, adaptive Finite Element simulations in which we use preconditioned Conjugate Gradient solvers based on domain-decomposition. The load balancing is designed to maintain good partition aspect ratio and we show that cut size is not always the appropriate measure in load balancing. Furthermore, we attempt to answer the question why the aspect ratio of partitions plays an important role for certain solvers. We define and rate different kinds of aspect ratio and present a new center-based partitioning method of calculating the initial distribution which implicitly optimizes this measure. During the adaptive simulation, the load balancer calculates a balancing flow using different versions of the diffusion algorithm and a variant of breadth first search. Elements to be migrated are chosen according to a cost function aiming at the optimization of subdomain shapes. Experimental results for Bramble's preconditioner and comparisons to state-of-the-art load balancers show the benefits of the construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper focuses on the development of an aircraft design optimization methodology that models uncertainty and sensitivity analysis in the tradeoff between manufacturing cost, structural requirements, andaircraft direct operating cost.Specifically,ratherthanonlylooking atmanufacturingcost, direct operatingcost is also consideredintermsof the impact of weight on fuel burn, in addition to the acquisition cost to be borne by the operator. Ultimately, there is a tradeoff between driving design according to minimal weight and driving it according to reduced manufacturing cost. Theanalysis of cost is facilitated withagenetic-causal cost-modeling methodology,andthe structural analysis is driven by numerical expressions of appropriate failure modes that use ESDU International reference data. However, a key contribution of the paper is to investigate the modeling of uncertainty and to perform a sensitivity analysis to investigate the robustness of the optimization methodology. Stochastic distributions are used to characterize manufacturing cost distributions, andMonteCarlo analysis is performed in modeling the impact of uncertainty on the cost modeling. The results are then used in a sensitivity analysis that incorporates the optimization methodology. In addition to investigating manufacturing cost variance, the sensitivity of the optimization to fuel burn cost and structural loading are also investigated. It is found that the consideration of manufacturing cost does make an impact and results in a different optimal design configuration from that delivered by the minimal-weight method. However, it was shown that at lower applied loads there is a threshold fuel burn cost at which the optimization process needs to reduce weight, and this threshold decreases with increasing load. The new optimal solution results in lower direct operating cost with a predicted savings of 640=m2 of fuselage skin over the life, relating to a rough order-of-magnitude direct operating cost savings of $500,000 for the fuselage alone of a small regional jet. Moreover, it was found through the uncertainty analysis that the principle was not sensitive to cost variance, although the margins do change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a complex fiber bundle model for the optimization of heterogeneous materials, which consists of many simple bundles. We also present an exact and compact recursion relation for the failure probability of a simple fiber bundle model with local load sharing, which is more efficient than the ones reported previously. Using a ''renormalization method'' and the recursion relation developed for the simple bundle, we calculate the failure probabilities of the complex fiber bundle. When the total number of fibers is given, we find that there exists an optimum way to organize the complex bundle, in which one gets a stronger bundle than in other ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes.A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies have shown that postbuckling stiffened panels may undergo abrupt changes in buckled mode
shape when loaded in uniaxial compression. This phenomenon is often referred to as a mode jump or secondary
instability. The resulting sudden release of stored energy may initiate damage in vulnerable regions within a
structure, for example, at the skin-stiffener interface of a stiffened composite panel. Current design practice is to
remove a mode jump by increasing the skin thickness of the postbuckling region. A layup optimization methodology,
based on a genetic algorithm, is presented, which delays the onset of secondary instabilities in a composite structure
while maintaining a constant weight and subject to a number of design constraints. A finite element model was
developed of a stiffened panel’s skin bay, which exhibited secondary instabilities. An automated numerical routine
extracted information directly from the finite element displacement results to detect the onset of initial buckling and
secondary instabilities. This routine was linked to the genetic algorithm to find a revised layup for the skin bay, within
appropriate design constraints, to delay the onset of secondary instabilities. The layup optimization methodology,
resulted in a panel that had a higher buckling load, prebuckling stiffness, and secondary instability load than the
baseline design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A integridade do sinal em sistemas digitais interligados de alta velocidade, e avaliada através da simulação de modelos físicos (de nível de transístor) é custosa de ponto vista computacional (por exemplo, em tempo de execução de CPU e armazenamento de memória), e exige a disponibilização de detalhes físicos da estrutura interna do dispositivo. Esse cenário aumenta o interesse pela alternativa de modelação comportamental que descreve as características de operação do equipamento a partir da observação dos sinais eléctrico de entrada/saída (E/S). Os interfaces de E/S em chips de memória, que mais contribuem em carga computacional, desempenham funções complexas e incluem, por isso, um elevado número de pinos. Particularmente, os buffers de saída são obrigados a distorcer os sinais devido à sua dinâmica e não linearidade. Portanto, constituem o ponto crítico nos de circuitos integrados (CI) para a garantia da transmissão confiável em comunicações digitais de alta velocidade. Neste trabalho de doutoramento, os efeitos dinâmicos não-lineares anteriormente negligenciados do buffer de saída são estudados e modulados de forma eficiente para reduzir a complexidade da modelação do tipo caixa-negra paramétrica, melhorando assim o modelo standard IBIS. Isto é conseguido seguindo a abordagem semi-física que combina as características de formulação do modelo caixa-negra, a análise dos sinais eléctricos observados na E/S e propriedades na estrutura física do buffer em condições de operação práticas. Esta abordagem leva a um processo de construção do modelo comportamental fisicamente inspirado que supera os problemas das abordagens anteriores, optimizando os recursos utilizados em diferentes etapas de geração do modelo (ou seja, caracterização, formulação, extracção e implementação) para simular o comportamento dinâmico não-linear do buffer. Em consequência, contributo mais significativo desta tese é o desenvolvimento de um novo modelo comportamental analógico de duas portas adequado à simulação em overclocking que reveste de um particular interesse nas mais recentes usos de interfaces de E/S para memória de elevadas taxas de transmissão. A eficácia e a precisão dos modelos comportamentais desenvolvidos e implementados são qualitativa e quantitativamente avaliados comparando os resultados numéricos de extracção das suas funções e de simulação transitória com o correspondente modelo de referência do estado-da-arte, IBIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O transporte marítimo e o principal meio de transporte de mercadorias em todo o mundo. Combustíveis e produtos petrolíferos representam grande parte das mercadorias transportadas por via marítima. Sendo Cabo Verde um arquipelago o transporte por mar desempenha um papel de grande relevância na economia do país. Consideramos o problema da distribuicao de combustíveis em Cabo Verde, onde uma companhia e responsavel por coordenar a distribuicao de produtos petrolíferos com a gestão dos respetivos níveis armazenados em cada porto, de modo a satisfazer a procura dos varios produtos. O objetivo consiste em determinar políticas de distribuicão de combustíveis que minimizam o custo total de distribuiçao (transporte e operacões) enquanto os n íveis de armazenamento sao mantidos nos n íveis desejados. Por conveniencia, de acordo com o planeamento temporal, o prob¬lema e divido em dois sub-problemas interligados. Um de curto prazo e outro de medio prazo. Para o problema de curto prazo sao discutidos modelos matemáticos de programacao inteira mista, que consideram simultaneamente uma medicao temporal cont ínua e uma discreta de modo a modelar multiplas janelas temporais e taxas de consumo que variam diariamente. Os modelos sao fortalecidos com a inclusão de desigualdades validas. O problema e então resolvido usando um "software" comercial. Para o problema de medio prazo sao inicialmente discutidos e comparados varios modelos de programacao inteira mista para um horizonte temporal curto assumindo agora uma taxa de consumo constante, e sao introduzidas novas desigualdades validas. Com base no modelo escolhido sao compara¬das estrategias heurísticas que combinam três heur ísticas bem conhecidas: "Rolling Horizon", "Feasibility Pump" e "Local Branching", de modo a gerar boas soluçoes admissíveis para planeamentos com horizontes temporais de varios meses. Finalmente, de modo a lidar com situaçoes imprevistas, mas impor¬tantes no transporte marítimo, como as mas condicões meteorológicas e congestionamento dos portos, apresentamos um modelo estocastico para um problema de curto prazo, onde os tempos de viagens e os tempos de espera nos portos sao aleatórios. O problema e formulado como um modelo em duas etapas, onde na primeira etapa sao tomadas as decisões relativas as rotas do navio e quantidades a carregar e descarregar e na segunda etapa (designada por sub-problema) sao consideradas as decisoes (com recurso) relativas ao escalonamento das operacões. O problema e resolvido por um metodo de decomposto que usa um algoritmo eficiente para separar as desigualdades violadas no sub-problema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.