981 resultados para Context Recognition
Resumo:
This paper studies the effectiveness of the recorded books and teaching method developed by Dr. Marie Carbo in the aural habilitation of pre-lingual deaf children with cochlear implants.
Resumo:
This paper studies the relationship between consonant duration and recognition of these consanants by listeners with high frequency hearing loss.
Resumo:
The ability for individuals with hearing loss to accurately recognize correct versus incorrect verbal responses during traditional word recognition testing across four different listening conditions was assessed.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).
Resumo:
An aim of government and the international community is to respond to global processes and crises through a range of policy and practical approaches that help limit damage from shocks and stresses. Three approaches to vulnerability reduction that have become particularly prominent in recent years are social protection (SP), disaster risk reduction (DRR) and climate change adaptation (CCA). Although these approaches have much in common, they have developed separately over the last two decades. However, given the increasingly complex and interlinked array of risks that poor and vulnerable people face, it is likely that they will not be sufficient in the long run if they continue to be applied in isolation from one another. In recognition of this challenge, the concept of Adaptive Social Protection (ASP) has been developed. ASP refers to a series of measures which aims to build resilience of the poorest and most vulnerable people to climate change by combining elements of SP, DRR and CCA in programmes and projects. The aim of this paper is to provide an initial assessment of the ways in which these elements are being brought together in development policy and practice. It does this by conducting a meta-analysis of 124 agricultural programmes implemented in five countries in south Asia. These are Afghanistan, Bangladesh, India, Nepal and Pakistan. The findings show that full integration of SP, DRR and CCA is relatively limited in south Asia, although there has been significant progress in combining SP and DRR in the last ten years. Projects that combine elements of SP, DRR and CCA tend to emphasise broad poverty and vulnerability reduction goals relative to those that do not. Such approaches can provide valuable lessons and insights for the promotion of climate resilient livelihoods amongst policymakers and practitioners.
Resumo:
Little is known about the way speech in noise is processed along the auditory pathway. The purpose of this study was to evaluate the relation between listening in noise using the R-Space system and the neurophysiologic response of the speech-evoked auditory brainstem when recorded in quiet and noise in adult participants with mild to moderate hearing loss and normal hearing.
Resumo:
The purpose of the present study was to evaluate the effects of bimodal (implant plus hearing aid) listening on speech recognition in four different environment conditions. Results indicate that there was little difference in the cochlear implant only and bimodal conditions.
Resumo:
Although research on Implicit Leadership Theories (ILT) has put great effort on determining what attributes define a leader prototype, little attention has been given to understanding the relative importance of each of these attributes in the categorization process by followers. Knowing that recognition-based leadership perceptions are the result of the match between followers’ ILTs and the perceived attributes in their actual leaders, understanding how specific prototypical leader attributes impact this impression formation process is particularly relevant. In this study, we draw upon socio-cognitive theories to explore how followers cognitively process the information about a leader’s attributes. By using Conjoint Analysis (CA), a technique that allows us to measure an individual’s trade-offs when making choices about multi-attributed options, we conducted a series of 4 studies with a total of 879 participants. Our results demonstrate that attributes’ importance for individuals’ leadership perceptions formation is rather heterogeneous, and that some attributes can enhance or spoil the importance of other prototypical attributes. Finally, by manipulating the leadership domain, we show that the weighting pattern of attributes is context dependent, as suggested by the connectionist approach to leadership categorization. Our findings also demonstrate that Conjoint Analysis can be a valuable tool for ILT research.
Resumo:
A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.
Resumo:
Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.
Resumo:
In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.
Resumo:
Many methods based on biometrics such as fingerprint, face, iris, and retina have been proposed for person identification. However, for deceased individuals, such biometric measurements are not available. In such cases, parts of the human skeleton can be used for identification, such as dental records, thorax, vertebrae, shoulder, and frontal sinus. It has been established in prior investigations that the radiographic pattern of frontal sinus is highly variable and unique for every individual. This has stimulated the proposition of measurements of the frontal sinus pattern, obtained from x-ray films, for skeletal identification. This paper presents a frontal sinus recognition method for human identification based on Image Foresting Transform and shape context. Experimental results (ERR = 5,82%) have shown the effectiveness of the proposed method.